The calculator will find the derivative of
−x2+12x, with steps shown.
Related calculators:
Logarithmic Differentiation Calculator,
Implicit Differentiation Calculator with Steps
Solution
Apply the constant multiple rule dxd(cf(x))=cdxd(f(x)) with c=−2 and f(x)=x2+1x:
(dxd(−x2+12x))=(−2dxd(x2+1x))Apply the quotient rule dxd(g(x)f(x))=g2(x)dxd(f(x))g(x)−f(x)dxd(g(x)) with f(x)=x and g(x)=x2+1:
−2(dxd(x2+1x))=−2((x2+1)2dxd(x)(x2+1)−xdxd(x2+1))The derivative of a sum/difference is the sum/difference of derivatives:
−(x2+1)22(−x(dxd(x2+1))+(x2+1)dxd(x))=−(x2+1)22(−x(dxd(x2)+dxd(1))+(x2+1)dxd(x))Apply the power rule dxd(xn)=nxn−1 with n=2:
−(x2+1)22(−x((dxd(x2))+dxd(1))+(x2+1)dxd(x))=−(x2+1)22(−x((2x)+dxd(1))+(x2+1)dxd(x))The derivative of a constant is 0:
−(x2+1)22(−x(2x+(dxd(1)))+(x2+1)dxd(x))=−(x2+1)22(−x(2x+(0))+(x2+1)dxd(x))Apply the power rule dxd(xn)=nxn−1 with n=1, in other words, dxd(x)=1:
−(x2+1)22(−2x2+(x2+1)(dxd(x)))=−(x2+1)22(−2x2+(x2+1)(1))Simplify:
−(x2+1)22(1−x2)=(x2+1)22(x2−1)Thus, dxd(−x2+12x)=(x2+1)22(x2−1).
Answer
dxd(−x2+12x)=(x2+1)22(x2−1)A