Limit Calculator
Calculate limits step by step
This free calculator will try to find the limit (two-sided or one-sided, including left and right) of the given function at the given point (including infinity), with steps shown.
Different techniques are used to handle limits (including indeterminate forms): limit laws, rewriting and simplifying, L'Hôpital's rule, rationalizing the denominator, taking natural logarithm, etc.
Solution
Your input: find lim
Multiply and divide by e^{- x}:
{\color{red}{\lim_{x \to -\infty}\left(x + e^{- x}\right)}} = {\color{red}{\lim_{x \to -\infty} \left(x + e^{- x}\right) e^{x} e^{- x}}}
Divide:
{\color{red}{\lim_{x \to -\infty} \left(x + e^{- x}\right) e^{x} e^{- x}}} = {\color{red}{\lim_{x \to -\infty} \left(x e^{x} + 1\right) e^{- x}}}
The limit of a product/quotient is the product/quotient of limits:
{\color{red}{\lim_{x \to -\infty} \left(x e^{x} + 1\right) e^{- x}}} = {\color{red}{\lim_{x \to -\infty}\left(x e^{x} + 1\right) \lim_{x \to -\infty} e^{- x}}}
The limit of a sum/difference is the sum/difference of limits:
\lim_{x \to -\infty} e^{- x} {\color{red}{\lim_{x \to -\infty}\left(x e^{x} + 1\right)}} = \lim_{x \to -\infty} e^{- x} {\color{red}{\left(\lim_{x \to -\infty} 1 + \lim_{x \to -\infty} x e^{x}\right)}}
The limit of a constant is equal to the constant:
\lim_{x \to -\infty} e^{- x} \left(\lim_{x \to -\infty} x e^{x} + {\color{red}{\lim_{x \to -\infty} 1}}\right) = \lim_{x \to -\infty} e^{- x} \left(\lim_{x \to -\infty} x e^{x} + {\color{red}{1}}\right)
Rewrite:
\lim_{x \to -\infty} e^{- x} \left(1 + {\color{red}{\lim_{x \to -\infty} x e^{x}}}\right) = \lim_{x \to -\infty} e^{- x} \left(1 + {\color{red}{\lim_{x \to -\infty} \frac{x}{e^{- x}}}}\right)
Since we have an indeterminate form of type \frac{\infty}{\infty}, we can apply the l'Hopital's rule:
\lim_{x \to -\infty} e^{- x} \left(1 + {\color{red}{\lim_{x \to -\infty} \frac{x}{e^{- x}}}}\right) = \lim_{x \to -\infty} e^{- x} \left(1 + {\color{red}{\lim_{x \to -\infty} \frac{\frac{d}{dx}\left(x\right)}{\frac{d}{dx}\left(e^{- x}\right)}}}\right)
For steps, see derivative calculator.
\lim_{x \to -\infty} e^{- x} \left(1 + {\color{red}{\lim_{x \to -\infty} \frac{\frac{d}{dx}\left(x\right)}{\frac{d}{dx}\left(e^{- x}\right)}}}\right) = \lim_{x \to -\infty} e^{- x} \left(1 + {\color{red}{\lim_{x \to -\infty}\left(- e^{x}\right)}}\right)
Apply the constant multiple rule \lim_{x \to -\infty} c f{\left(x \right)} = c \lim_{x \to -\infty} f{\left(x \right)} with c=-1 and f{\left(x \right)} = e^{x}:
\lim_{x \to -\infty} e^{- x} \left(1 + {\color{red}{\lim_{x \to -\infty}\left(- e^{x}\right)}}\right) = \lim_{x \to -\infty} e^{- x} \left(1 + {\color{red}{\left(- \lim_{x \to -\infty} e^{x}\right)}}\right)
Move the limit under the exponential:
\lim_{x \to -\infty} e^{- x} \left(1 - {\color{red}{\lim_{x \to -\infty} e^{x}}}\right) = \lim_{x \to -\infty} e^{- x} \left(1 - {\color{red}{e^{\lim_{x \to -\infty} x}}}\right)
The function decreases without a bound:
\lim_{x \to -\infty} x = -\infty
The function grows without a bound:
\lim_{x \to -\infty} e^{- x} = \infty
Therefore,
\lim_{x \to -\infty}\left(x + e^{- x}\right) = \infty
Answer: \lim_{x \to -\infty}\left(x + e^{- x}\right)=\infty