Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Limit Calculator

Calculate limits step by step

This free calculator will try to find the limit (two-sided or one-sided, including left and right) of the given function at the given point (including infinity), with steps shown.

Different techniques are used to handle limits (including indeterminate forms): limit laws, rewriting and simplifying, L'Hôpital's rule, rationalizing the denominator, taking natural logarithm, etc.

Enter a function:

Choose a variable:

Find the limit at:

If you need , type inf.

Choose a direction:

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Solution

Your input: find lim

Multiply and divide by e^{- x}:

{\color{red}{\lim_{x \to -\infty}\left(x + e^{- x}\right)}} = {\color{red}{\lim_{x \to -\infty} \left(x + e^{- x}\right) e^{x} e^{- x}}}

Divide:

{\color{red}{\lim_{x \to -\infty} \left(x + e^{- x}\right) e^{x} e^{- x}}} = {\color{red}{\lim_{x \to -\infty} \left(x e^{x} + 1\right) e^{- x}}}

The limit of a product/quotient is the product/quotient of limits:

{\color{red}{\lim_{x \to -\infty} \left(x e^{x} + 1\right) e^{- x}}} = {\color{red}{\lim_{x \to -\infty}\left(x e^{x} + 1\right) \lim_{x \to -\infty} e^{- x}}}

The limit of a sum/difference is the sum/difference of limits:

\lim_{x \to -\infty} e^{- x} {\color{red}{\lim_{x \to -\infty}\left(x e^{x} + 1\right)}} = \lim_{x \to -\infty} e^{- x} {\color{red}{\left(\lim_{x \to -\infty} 1 + \lim_{x \to -\infty} x e^{x}\right)}}

The limit of a constant is equal to the constant:

\lim_{x \to -\infty} e^{- x} \left(\lim_{x \to -\infty} x e^{x} + {\color{red}{\lim_{x \to -\infty} 1}}\right) = \lim_{x \to -\infty} e^{- x} \left(\lim_{x \to -\infty} x e^{x} + {\color{red}{1}}\right)

Rewrite:

\lim_{x \to -\infty} e^{- x} \left(1 + {\color{red}{\lim_{x \to -\infty} x e^{x}}}\right) = \lim_{x \to -\infty} e^{- x} \left(1 + {\color{red}{\lim_{x \to -\infty} \frac{x}{e^{- x}}}}\right)

Since we have an indeterminate form of type \frac{\infty}{\infty}, we can apply the l'Hopital's rule:

\lim_{x \to -\infty} e^{- x} \left(1 + {\color{red}{\lim_{x \to -\infty} \frac{x}{e^{- x}}}}\right) = \lim_{x \to -\infty} e^{- x} \left(1 + {\color{red}{\lim_{x \to -\infty} \frac{\frac{d}{dx}\left(x\right)}{\frac{d}{dx}\left(e^{- x}\right)}}}\right)

For steps, see derivative calculator.

\lim_{x \to -\infty} e^{- x} \left(1 + {\color{red}{\lim_{x \to -\infty} \frac{\frac{d}{dx}\left(x\right)}{\frac{d}{dx}\left(e^{- x}\right)}}}\right) = \lim_{x \to -\infty} e^{- x} \left(1 + {\color{red}{\lim_{x \to -\infty}\left(- e^{x}\right)}}\right)

Apply the constant multiple rule \lim_{x \to -\infty} c f{\left(x \right)} = c \lim_{x \to -\infty} f{\left(x \right)} with c=-1 and f{\left(x \right)} = e^{x}:

\lim_{x \to -\infty} e^{- x} \left(1 + {\color{red}{\lim_{x \to -\infty}\left(- e^{x}\right)}}\right) = \lim_{x \to -\infty} e^{- x} \left(1 + {\color{red}{\left(- \lim_{x \to -\infty} e^{x}\right)}}\right)

Move the limit under the exponential:

\lim_{x \to -\infty} e^{- x} \left(1 - {\color{red}{\lim_{x \to -\infty} e^{x}}}\right) = \lim_{x \to -\infty} e^{- x} \left(1 - {\color{red}{e^{\lim_{x \to -\infty} x}}}\right)

The function decreases without a bound:

\lim_{x \to -\infty} x = -\infty

The function grows without a bound:

\lim_{x \to -\infty} e^{- x} = \infty

Therefore,

\lim_{x \to -\infty}\left(x + e^{- x}\right) = \infty

Answer: \lim_{x \to -\infty}\left(x + e^{- x}\right)=\infty