Solution
Let u=x1.
Then du=(x1)′dx=−x21dx (steps can be seen »), and we have that x2dx=−du.
So,
∫xx2−11dx=∫(−1−u21)du
Apply the constant multiple rule ∫cf(u)du=c∫f(u)du with c=−1 and f(u)=1−u21:
∫(−1−u21)du=(−∫1−u21du)
Let u=sin(v).
Then du=(sin(v))′dv=cos(v)dv (steps can be seen »).
Also, it follows that v=asin(u).
Therefore,
1−u21=1−sin2(v)1
Use the identity 1−sin2(v)=cos2(v):
1−sin2(v)1=cos2(v)1
Assuming that cos(v)≥0, we obtain the following:
cos2(v)1=cos(v)1
Integral becomes
−∫1−u21du=−∫1dv
Apply the constant rule ∫cdv=cv with c=1:
−∫1dv=−v
Recall that v=asin(u):
−v=−asin(u)
Recall that u=x1:
−asin(u)=−asin(x1)
Therefore,
∫xx2−11dx=−asin(x1)
Add the constant of integration:
∫xx2−11dx=−asin(x1)+C