Integral of 1xx21\frac{1}{x \sqrt{x^{2} - 1}}

The calculator will find the integral/antiderivative of 1xx21\frac{1}{x \sqrt{x^{2} - 1}}, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as dxdx, dydy etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find 1xx21dx\int \frac{1}{x \sqrt{x^{2} - 1}}\, dx.

Solution

Let u=1xu=\frac{1}{x}.

Then du=(1x)dx=1x2dxdu=\left(\frac{1}{x}\right)^{\prime }dx = - \frac{1}{x^{2}} dx (steps can be seen »), and we have that dxx2=du\frac{dx}{x^{2}} = - du.

So,

1xx21dx=(11u2)du{\color{red}{\int{\frac{1}{x \sqrt{x^{2} - 1}} d x}}} = {\color{red}{\int{\left(- \frac{1}{\sqrt{1 - u^{2}}}\right)d u}}}

Apply the constant multiple rule cf(u)du=cf(u)du\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du with c=1c=-1 and f(u)=11u2f{\left(u \right)} = \frac{1}{\sqrt{1 - u^{2}}}:

(11u2)du=(11u2du){\color{red}{\int{\left(- \frac{1}{\sqrt{1 - u^{2}}}\right)d u}}} = {\color{red}{\left(- \int{\frac{1}{\sqrt{1 - u^{2}}} d u}\right)}}

Let u=sin(v)u=\sin{\left(v \right)}.

Then du=(sin(v))dv=cos(v)dvdu=\left(\sin{\left(v \right)}\right)^{\prime }dv = \cos{\left(v \right)} dv (steps can be seen »).

Also, it follows that v=asin(u)v=\operatorname{asin}{\left(u \right)}.

Therefore,

11u2=11sin2(v)\frac{1}{\sqrt{1 - u ^{2}}} = \frac{1}{\sqrt{1 - \sin^{2}{\left( v \right)}}}

Use the identity 1sin2(v)=cos2(v)1 - \sin^{2}{\left( v \right)} = \cos^{2}{\left( v \right)}:

11sin2(v)=1cos2(v)\frac{1}{\sqrt{1 - \sin^{2}{\left( v \right)}}}=\frac{1}{\sqrt{\cos^{2}{\left( v \right)}}}

Assuming that cos(v)0\cos{\left( v \right)} \ge 0, we obtain the following:

1cos2(v)=1cos(v)\frac{1}{\sqrt{\cos^{2}{\left( v \right)}}} = \frac{1}{\cos{\left( v \right)}}

Integral becomes

11u2du=1dv- {\color{red}{\int{\frac{1}{\sqrt{1 - u^{2}}} d u}}} = - {\color{red}{\int{1 d v}}}

Apply the constant rule cdv=cv\int c\, dv = c v with c=1c=1:

1dv=v- {\color{red}{\int{1 d v}}} = - {\color{red}{v}}

Recall that v=asin(u)v=\operatorname{asin}{\left(u \right)}:

v=asin(u)- {\color{red}{v}} = - {\color{red}{\operatorname{asin}{\left(u \right)}}}

Recall that u=1xu=\frac{1}{x}:

asin(u)=asin(1x)- \operatorname{asin}{\left({\color{red}{u}} \right)} = - \operatorname{asin}{\left({\color{red}{\frac{1}{x}}} \right)}

Therefore,

1xx21dx=asin(1x)\int{\frac{1}{x \sqrt{x^{2} - 1}} d x} = - \operatorname{asin}{\left(\frac{1}{x} \right)}

Add the constant of integration:

1xx21dx=asin(1x)+C\int{\frac{1}{x \sqrt{x^{2} - 1}} d x} = - \operatorname{asin}{\left(\frac{1}{x} \right)}+C

Answer

1xx21dx=asin(1x)+C\int \frac{1}{x \sqrt{x^{2} - 1}}\, dx = - \operatorname{asin}{\left(\frac{1}{x} \right)} + CA