Divergence Calculator
Calculate divergence step by step
The calculator will find the divergence of the given vector field, with steps shown.
Related calculators: Partial Derivative Calculator, Dot Product Calculator
Your Input
Calculate $$$\operatorname{div} \left\langle \sin{\left(x y \right)}, \cos{\left(x y \right)}, e^{z}\right\rangle$$$.
Solution
By definition, $$$\operatorname{div} \left\langle \sin{\left(x y \right)}, \cos{\left(x y \right)}, e^{z}\right\rangle = \nabla\cdot \left\langle \sin{\left(x y \right)}, \cos{\left(x y \right)}, e^{z}\right\rangle$$$, or, equivalently, $$$\operatorname{div} \left\langle \sin{\left(x y \right)}, \cos{\left(x y \right)}, e^{z}\right\rangle = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle\cdot \left\langle \sin{\left(x y \right)}, \cos{\left(x y \right)}, e^{z}\right\rangle$$$, where $$$\cdot$$$ is the dot product operator.
Thus, $$$\operatorname{div} \left\langle \sin{\left(x y \right)}, \cos{\left(x y \right)}, e^{z}\right\rangle = \frac{\partial}{\partial x} \left(\sin{\left(x y \right)}\right) + \frac{\partial}{\partial y} \left(\cos{\left(x y \right)}\right) + \frac{\partial}{\partial z} \left(e^{z}\right).$$$
Find the partial derivative of component 1 with respect to $$$x$$$: $$$\frac{\partial}{\partial x} \left(\sin{\left(x y \right)}\right) = y \cos{\left(x y \right)}$$$ (for steps, see derivative calculator).
Find the partial derivative of component 2 with respect to $$$y$$$: $$$\frac{\partial}{\partial y} \left(\cos{\left(x y \right)}\right) = - x \sin{\left(x y \right)}$$$ (for steps, see derivative calculator).
Find the partial derivative of component 3 with respect to $$$z$$$: $$$\frac{\partial}{\partial z} \left(e^{z}\right) = e^{z}$$$ (for steps, see derivative calculator).
Now, just sum up the above expressions to get the divergence: $$$\operatorname{div} \left\langle \sin{\left(x y \right)}, \cos{\left(x y \right)}, e^{z}\right\rangle = - x \sin{\left(x y \right)} + y \cos{\left(x y \right)} + e^{z}.$$$
Answer
$$$\operatorname{div} \left\langle \sin{\left(x y \right)}, \cos{\left(x y \right)}, e^{z}\right\rangle = - x \sin{\left(x y \right)} + y \cos{\left(x y \right)} + e^{z}$$$A