Divide u7u^{7} by u2+1u^{2} + 1

The calculator will divide u7u^{7} by u2+1u^{2} + 1 using long division, with steps shown.

Related calculators: Synthetic Division Calculator, Long Division Calculator

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find u7u2+1\frac{u^{7}}{u^{2} + 1} using long division.

Solution

Write the problem in the special format (missed terms are written with zero coefficients):

u2+1u7+0u6+0u5+0u4+0u3+0u2+0u+0\begin{array}{r|r}\hline\\u^{2}+1&u^{7}+0 u^{6}+0 u^{5}+0 u^{4}+0 u^{3}+0 u^{2}+0 u+0\end{array}

Step 1

Divide the leading term of the dividend by the leading term of the divisor: u7u2=u5\frac{u^{7}}{u^{2}} = u^{5}.

Write down the calculated result in the upper part of the table.

Multiply it by the divisor: u5(u2+1)=u7+u5u^{5} \left(u^{2}+1\right) = u^{7}+u^{5}.

Subtract the dividend from the obtained result: (u7)(u7+u5)=u5\left(u^{7}\right) - \left(u^{7}+u^{5}\right) = - u^{5}.

u5u2+1u7+0u6+0u5+0u4+0u3+0u2+0u+0u7u2=u5u7u7+0u6+u5u5(u2+1)=u7+u5u5+0u4+0u3+0u2+0u+0\begin{array}{r|rrrrrrrr:c}&{\color{OrangeRed}u^{5}}&&&&&&&&\\\hline\\{\color{Magenta}u^{2}}+1&{\color{OrangeRed}u^{7}}&+0 u^{6}&+0 u^{5}&+0 u^{4}&+0 u^{3}&+0 u^{2}&+0 u&+0&\frac{{\color{OrangeRed}u^{7}}}{{\color{Magenta}u^{2}}} = {\color{OrangeRed}u^{5}}\\&-\phantom{u^{7}}&&&&&&&&\\&u^{7}&+0 u^{6}&+u^{5}&&&&&&{\color{OrangeRed}u^{5}} \left(u^{2}+1\right) = u^{7}+u^{5}\\\hline\\&&&- u^{5}&+0 u^{4}&+0 u^{3}&+0 u^{2}&+0 u&+0&\end{array}

Step 2

Divide the leading term of the obtained remainder by the leading term of the divisor: u5u2=u3\frac{- u^{5}}{u^{2}} = - u^{3}.

Write down the calculated result in the upper part of the table.

Multiply it by the divisor: u3(u2+1)=u5u3- u^{3} \left(u^{2}+1\right) = - u^{5}- u^{3}.

Subtract the remainder from the obtained result: (u5)(u5u3)=u3\left(- u^{5}\right) - \left(- u^{5}- u^{3}\right) = u^{3}.

u5u3u2+1u7+0u6+0u5+0u4+0u3+0u2+0u+0u7u7+0u6+u5u5+0u4+0u3+0u2+0u+0u5u2=u3u5u5+0u4u3u3(u2+1)=u5u3u3+0u2+0u+0\begin{array}{r|rrrrrrrr:c}&u^{5}&{\color{DarkMagenta}- u^{3}}&&&&&&&\\\hline\\{\color{Magenta}u^{2}}+1&u^{7}&+0 u^{6}&+0 u^{5}&+0 u^{4}&+0 u^{3}&+0 u^{2}&+0 u&+0&\\&-\phantom{u^{7}}&&&&&&&&\\&u^{7}&+0 u^{6}&+u^{5}&&&&&&\\\hline\\&&&{\color{DarkMagenta}- u^{5}}&+0 u^{4}&+0 u^{3}&+0 u^{2}&+0 u&+0&\frac{{\color{DarkMagenta}- u^{5}}}{{\color{Magenta}u^{2}}} = {\color{DarkMagenta}- u^{3}}\\&&&-\phantom{- u^{5}}&&&&&&\\&&&- u^{5}&+0 u^{4}&- u^{3}&&&&{\color{DarkMagenta}- u^{3}} \left(u^{2}+1\right) = - u^{5}- u^{3}\\\hline\\&&&&&u^{3}&+0 u^{2}&+0 u&+0&\end{array}

Step 3

Divide the leading term of the obtained remainder by the leading term of the divisor: u3u2=u\frac{u^{3}}{u^{2}} = u.

Write down the calculated result in the upper part of the table.

Multiply it by the divisor: u(u2+1)=u3+uu \left(u^{2}+1\right) = u^{3}+u.

Subtract the remainder from the obtained result: (u3)(u3+u)=u\left(u^{3}\right) - \left(u^{3}+u\right) = - u.

u5u3+uu2+1u7+0u6+0u5+0u4+0u3+0u2+0u+0u7u7+0u6+u5u5+0u4+0u3+0u2+0u+0u5u5+0u4u3u3+0u2+0u+0u3u2=uu3u3+0u2+uu(u2+1)=u3+uu+0\begin{array}{r|rrrrrrrr:c}&u^{5}&- u^{3}&{\color{Crimson}+u}&&&&&&\\\hline\\{\color{Magenta}u^{2}}+1&u^{7}&+0 u^{6}&+0 u^{5}&+0 u^{4}&+0 u^{3}&+0 u^{2}&+0 u&+0&\\&-\phantom{u^{7}}&&&&&&&&\\&u^{7}&+0 u^{6}&+u^{5}&&&&&&\\\hline\\&&&- u^{5}&+0 u^{4}&+0 u^{3}&+0 u^{2}&+0 u&+0&\\&&&-\phantom{- u^{5}}&&&&&&\\&&&- u^{5}&+0 u^{4}&- u^{3}&&&&\\\hline\\&&&&&{\color{Crimson}u^{3}}&+0 u^{2}&+0 u&+0&\frac{{\color{Crimson}u^{3}}}{{\color{Magenta}u^{2}}} = {\color{Crimson}u}\\&&&&&-\phantom{u^{3}}&&&&\\&&&&&u^{3}&+0 u^{2}&+u&&{\color{Crimson}u} \left(u^{2}+1\right) = u^{3}+u\\\hline\\&&&&&&&- u&+0&\end{array}

Since the degree of the remainder is less than the degree of the divisor, we are done.

The resulting table is shown once more:

u5u3+uHintsu2+1u7+0u6+0u5+0u4+0u3+0u2+0u+0u7u2=u5u7u7+0u6+u5u5(u2+1)=u7+u5u5+0u4+0u3+0u2+0u+0u5u2=u3u5u5+0u4u3u3(u2+1)=u5u3u3+0u2+0u+0u3u2=uu3u3+0u2+uu(u2+1)=u3+uu+0\begin{array}{r|rrrrrrrr:c}&{\color{OrangeRed}u^{5}}&{\color{DarkMagenta}- u^{3}}&{\color{Crimson}+u}&&&&&&\text{Hints}\\\hline\\{\color{Magenta}u^{2}}+1&{\color{OrangeRed}u^{7}}&+0 u^{6}&+0 u^{5}&+0 u^{4}&+0 u^{3}&+0 u^{2}&+0 u&+0&\frac{{\color{OrangeRed}u^{7}}}{{\color{Magenta}u^{2}}} = {\color{OrangeRed}u^{5}}\\&-\phantom{u^{7}}&&&&&&&&\\&u^{7}&+0 u^{6}&+u^{5}&&&&&&{\color{OrangeRed}u^{5}} \left(u^{2}+1\right) = u^{7}+u^{5}\\\hline\\&&&{\color{DarkMagenta}- u^{5}}&+0 u^{4}&+0 u^{3}&+0 u^{2}&+0 u&+0&\frac{{\color{DarkMagenta}- u^{5}}}{{\color{Magenta}u^{2}}} = {\color{DarkMagenta}- u^{3}}\\&&&-\phantom{- u^{5}}&&&&&&\\&&&- u^{5}&+0 u^{4}&- u^{3}&&&&{\color{DarkMagenta}- u^{3}} \left(u^{2}+1\right) = - u^{5}- u^{3}\\\hline\\&&&&&{\color{Crimson}u^{3}}&+0 u^{2}&+0 u&+0&\frac{{\color{Crimson}u^{3}}}{{\color{Magenta}u^{2}}} = {\color{Crimson}u}\\&&&&&-\phantom{u^{3}}&&&&\\&&&&&u^{3}&+0 u^{2}&+u&&{\color{Crimson}u} \left(u^{2}+1\right) = u^{3}+u\\\hline\\&&&&&&&- u&+0&\end{array}

Therefore, u7u2+1=(u5u3+u)+uu2+1\frac{u^{7}}{u^{2} + 1} = \left(u^{5} - u^{3} + u\right) + \frac{- u}{u^{2} + 1}.

Answer

u7u2+1=(u5u3+u)+uu2+1\frac{u^{7}}{u^{2} + 1} = \left(u^{5} - u^{3} + u\right) + \frac{- u}{u^{2} + 1}A