Divide 5x94x2+25 x^{9} - 4 x^{2} + 2 by 5x+105 x + 10

The calculator will divide 5x94x2+25 x^{9} - 4 x^{2} + 2 by 5x+105 x + 10 using long division, with steps shown.

Related calculators: Synthetic Division Calculator, Long Division Calculator

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find 5x94x2+25x+10\frac{5 x^{9} - 4 x^{2} + 2}{5 x + 10} using long division.

Solution

Write the problem in the special format (missed terms are written with zero coefficients):

5x+105x9+0x8+0x7+0x6+0x5+0x4+0x34x2+0x+2\begin{array}{r|r}\hline\\5 x+10&5 x^{9}+0 x^{8}+0 x^{7}+0 x^{6}+0 x^{5}+0 x^{4}+0 x^{3}- 4 x^{2}+0 x+2\end{array}

Step 1

Divide the leading term of the dividend by the leading term of the divisor: 5x95x=x8\frac{5 x^{9}}{5 x} = x^{8}.

Write down the calculated result in the upper part of the table.

Multiply it by the divisor: x8(5x+10)=5x9+10x8x^{8} \left(5 x+10\right) = 5 x^{9}+10 x^{8}.

Subtract the dividend from the obtained result: (5x94x2+2)(5x9+10x8)=10x84x2+2\left(5 x^{9}- 4 x^{2}+2\right) - \left(5 x^{9}+10 x^{8}\right) = - 10 x^{8}- 4 x^{2}+2.

x85x+105x9+0x8+0x7+0x6+0x5+0x4+0x34x2+0x+25x95x=x85x95x9+10x8x8(5x+10)=5x9+10x810x8+0x7+0x6+0x5+0x4+0x34x2+0x+2\begin{array}{r|rrrrrrrrrr:c}&{\color{Green}x^{8}}&&&&&&&&&&\\\hline\\{\color{Magenta}5 x}+10&{\color{Green}5 x^{9}}&+0 x^{8}&+0 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\frac{{\color{Green}5 x^{9}}}{{\color{Magenta}5 x}} = {\color{Green}x^{8}}\\&-\phantom{5 x^{9}}&&&&&&&&&&\\&5 x^{9}&+10 x^{8}&&&&&&&&&{\color{Green}x^{8}} \left(5 x+10\right) = 5 x^{9}+10 x^{8}\\\hline\\&&- 10 x^{8}&+0 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\end{array}

Step 2

Divide the leading term of the obtained remainder by the leading term of the divisor: 10x85x=2x7\frac{- 10 x^{8}}{5 x} = - 2 x^{7}.

Write down the calculated result in the upper part of the table.

Multiply it by the divisor: 2x7(5x+10)=10x820x7- 2 x^{7} \left(5 x+10\right) = - 10 x^{8}- 20 x^{7}.

Subtract the remainder from the obtained result: (10x84x2+2)(10x820x7)=20x74x2+2\left(- 10 x^{8}- 4 x^{2}+2\right) - \left(- 10 x^{8}- 20 x^{7}\right) = 20 x^{7}- 4 x^{2}+2.

x82x75x+105x9+0x8+0x7+0x6+0x5+0x4+0x34x2+0x+25x95x9+10x810x8+0x7+0x6+0x5+0x4+0x34x2+0x+210x85x=2x710x810x820x72x7(5x+10)=10x820x720x7+0x6+0x5+0x4+0x34x2+0x+2\begin{array}{r|rrrrrrrrrr:c}&x^{8}&{\color{Blue}- 2 x^{7}}&&&&&&&&&\\\hline\\{\color{Magenta}5 x}+10&5 x^{9}&+0 x^{8}&+0 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&-\phantom{5 x^{9}}&&&&&&&&&&\\&5 x^{9}&+10 x^{8}&&&&&&&&&\\\hline\\&&{\color{Blue}- 10 x^{8}}&+0 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\frac{{\color{Blue}- 10 x^{8}}}{{\color{Magenta}5 x}} = {\color{Blue}- 2 x^{7}}\\&&-\phantom{- 10 x^{8}}&&&&&&&&&\\&&- 10 x^{8}&- 20 x^{7}&&&&&&&&{\color{Blue}- 2 x^{7}} \left(5 x+10\right) = - 10 x^{8}- 20 x^{7}\\\hline\\&&&20 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\end{array}

Step 3

Divide the leading term of the obtained remainder by the leading term of the divisor: 20x75x=4x6\frac{20 x^{7}}{5 x} = 4 x^{6}.

Write down the calculated result in the upper part of the table.

Multiply it by the divisor: 4x6(5x+10)=20x7+40x64 x^{6} \left(5 x+10\right) = 20 x^{7}+40 x^{6}.

Subtract the remainder from the obtained result: (20x74x2+2)(20x7+40x6)=40x64x2+2\left(20 x^{7}- 4 x^{2}+2\right) - \left(20 x^{7}+40 x^{6}\right) = - 40 x^{6}- 4 x^{2}+2.

x82x7+4x65x+105x9+0x8+0x7+0x6+0x5+0x4+0x34x2+0x+25x95x9+10x810x8+0x7+0x6+0x5+0x4+0x34x2+0x+210x810x820x720x7+0x6+0x5+0x4+0x34x2+0x+220x75x=4x620x720x7+40x64x6(5x+10)=20x7+40x640x6+0x5+0x4+0x34x2+0x+2\begin{array}{r|rrrrrrrrrr:c}&x^{8}&- 2 x^{7}&{\color{Violet}+4 x^{6}}&&&&&&&&\\\hline\\{\color{Magenta}5 x}+10&5 x^{9}&+0 x^{8}&+0 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&-\phantom{5 x^{9}}&&&&&&&&&&\\&5 x^{9}&+10 x^{8}&&&&&&&&&\\\hline\\&&- 10 x^{8}&+0 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&-\phantom{- 10 x^{8}}&&&&&&&&&\\&&- 10 x^{8}&- 20 x^{7}&&&&&&&&\\\hline\\&&&{\color{Violet}20 x^{7}}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\frac{{\color{Violet}20 x^{7}}}{{\color{Magenta}5 x}} = {\color{Violet}4 x^{6}}\\&&&-\phantom{20 x^{7}}&&&&&&&&\\&&&20 x^{7}&+40 x^{6}&&&&&&&{\color{Violet}4 x^{6}} \left(5 x+10\right) = 20 x^{7}+40 x^{6}\\\hline\\&&&&- 40 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\end{array}

Step 4

Divide the leading term of the obtained remainder by the leading term of the divisor: 40x65x=8x5\frac{- 40 x^{6}}{5 x} = - 8 x^{5}.

Write down the calculated result in the upper part of the table.

Multiply it by the divisor: 8x5(5x+10)=40x680x5- 8 x^{5} \left(5 x+10\right) = - 40 x^{6}- 80 x^{5}.

Subtract the remainder from the obtained result: (40x64x2+2)(40x680x5)=80x54x2+2\left(- 40 x^{6}- 4 x^{2}+2\right) - \left(- 40 x^{6}- 80 x^{5}\right) = 80 x^{5}- 4 x^{2}+2.

x82x7+4x68x55x+105x9+0x8+0x7+0x6+0x5+0x4+0x34x2+0x+25x95x9+10x810x8+0x7+0x6+0x5+0x4+0x34x2+0x+210x810x820x720x7+0x6+0x5+0x4+0x34x2+0x+220x720x7+40x640x6+0x5+0x4+0x34x2+0x+240x65x=8x540x640x680x58x5(5x+10)=40x680x580x5+0x4+0x34x2+0x+2\begin{array}{r|rrrrrrrrrr:c}&x^{8}&- 2 x^{7}&+4 x^{6}&{\color{Chartreuse}- 8 x^{5}}&&&&&&&\\\hline\\{\color{Magenta}5 x}+10&5 x^{9}&+0 x^{8}&+0 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&-\phantom{5 x^{9}}&&&&&&&&&&\\&5 x^{9}&+10 x^{8}&&&&&&&&&\\\hline\\&&- 10 x^{8}&+0 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&-\phantom{- 10 x^{8}}&&&&&&&&&\\&&- 10 x^{8}&- 20 x^{7}&&&&&&&&\\\hline\\&&&20 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&&-\phantom{20 x^{7}}&&&&&&&&\\&&&20 x^{7}&+40 x^{6}&&&&&&&\\\hline\\&&&&{\color{Chartreuse}- 40 x^{6}}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\frac{{\color{Chartreuse}- 40 x^{6}}}{{\color{Magenta}5 x}} = {\color{Chartreuse}- 8 x^{5}}\\&&&&-\phantom{- 40 x^{6}}&&&&&&&\\&&&&- 40 x^{6}&- 80 x^{5}&&&&&&{\color{Chartreuse}- 8 x^{5}} \left(5 x+10\right) = - 40 x^{6}- 80 x^{5}\\\hline\\&&&&&80 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\end{array}

Step 5

Divide the leading term of the obtained remainder by the leading term of the divisor: 80x55x=16x4\frac{80 x^{5}}{5 x} = 16 x^{4}.

Write down the calculated result in the upper part of the table.

Multiply it by the divisor: 16x4(5x+10)=80x5+160x416 x^{4} \left(5 x+10\right) = 80 x^{5}+160 x^{4}.

Subtract the remainder from the obtained result: (80x54x2+2)(80x5+160x4)=160x44x2+2\left(80 x^{5}- 4 x^{2}+2\right) - \left(80 x^{5}+160 x^{4}\right) = - 160 x^{4}- 4 x^{2}+2.

x82x7+4x68x5+16x45x+105x9+0x8+0x7+0x6+0x5+0x4+0x34x2+0x+25x95x9+10x810x8+0x7+0x6+0x5+0x4+0x34x2+0x+210x810x820x720x7+0x6+0x5+0x4+0x34x2+0x+220x720x7+40x640x6+0x5+0x4+0x34x2+0x+240x640x680x580x5+0x4+0x34x2+0x+280x55x=16x480x580x5+160x416x4(5x+10)=80x5+160x4160x4+0x34x2+0x+2\begin{array}{r|rrrrrrrrrr:c}&x^{8}&- 2 x^{7}&+4 x^{6}&- 8 x^{5}&{\color{Fuchsia}+16 x^{4}}&&&&&&\\\hline\\{\color{Magenta}5 x}+10&5 x^{9}&+0 x^{8}&+0 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&-\phantom{5 x^{9}}&&&&&&&&&&\\&5 x^{9}&+10 x^{8}&&&&&&&&&\\\hline\\&&- 10 x^{8}&+0 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&-\phantom{- 10 x^{8}}&&&&&&&&&\\&&- 10 x^{8}&- 20 x^{7}&&&&&&&&\\\hline\\&&&20 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&&-\phantom{20 x^{7}}&&&&&&&&\\&&&20 x^{7}&+40 x^{6}&&&&&&&\\\hline\\&&&&- 40 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&&&-\phantom{- 40 x^{6}}&&&&&&&\\&&&&- 40 x^{6}&- 80 x^{5}&&&&&&\\\hline\\&&&&&{\color{Fuchsia}80 x^{5}}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\frac{{\color{Fuchsia}80 x^{5}}}{{\color{Magenta}5 x}} = {\color{Fuchsia}16 x^{4}}\\&&&&&-\phantom{80 x^{5}}&&&&&&\\&&&&&80 x^{5}&+160 x^{4}&&&&&{\color{Fuchsia}16 x^{4}} \left(5 x+10\right) = 80 x^{5}+160 x^{4}\\\hline\\&&&&&&- 160 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\end{array}

Step 6

Divide the leading term of the obtained remainder by the leading term of the divisor: 160x45x=32x3\frac{- 160 x^{4}}{5 x} = - 32 x^{3}.

Write down the calculated result in the upper part of the table.

Multiply it by the divisor: 32x3(5x+10)=160x4320x3- 32 x^{3} \left(5 x+10\right) = - 160 x^{4}- 320 x^{3}.

Subtract the remainder from the obtained result: (160x44x2+2)(160x4320x3)=320x34x2+2\left(- 160 x^{4}- 4 x^{2}+2\right) - \left(- 160 x^{4}- 320 x^{3}\right) = 320 x^{3}- 4 x^{2}+2.

x82x7+4x68x5+16x432x35x+105x9+0x8+0x7+0x6+0x5+0x4+0x34x2+0x+25x95x9+10x810x8+0x7+0x6+0x5+0x4+0x34x2+0x+210x810x820x720x7+0x6+0x5+0x4+0x34x2+0x+220x720x7+40x640x6+0x5+0x4+0x34x2+0x+240x640x680x580x5+0x4+0x34x2+0x+280x580x5+160x4160x4+0x34x2+0x+2160x45x=32x3160x4160x4320x332x3(5x+10)=160x4320x3320x34x2+0x+2\begin{array}{r|rrrrrrrrrr:c}&x^{8}&- 2 x^{7}&+4 x^{6}&- 8 x^{5}&+16 x^{4}&{\color{DarkCyan}- 32 x^{3}}&&&&&\\\hline\\{\color{Magenta}5 x}+10&5 x^{9}&+0 x^{8}&+0 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&-\phantom{5 x^{9}}&&&&&&&&&&\\&5 x^{9}&+10 x^{8}&&&&&&&&&\\\hline\\&&- 10 x^{8}&+0 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&-\phantom{- 10 x^{8}}&&&&&&&&&\\&&- 10 x^{8}&- 20 x^{7}&&&&&&&&\\\hline\\&&&20 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&&-\phantom{20 x^{7}}&&&&&&&&\\&&&20 x^{7}&+40 x^{6}&&&&&&&\\\hline\\&&&&- 40 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&&&-\phantom{- 40 x^{6}}&&&&&&&\\&&&&- 40 x^{6}&- 80 x^{5}&&&&&&\\\hline\\&&&&&80 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&&&&-\phantom{80 x^{5}}&&&&&&\\&&&&&80 x^{5}&+160 x^{4}&&&&&\\\hline\\&&&&&&{\color{DarkCyan}- 160 x^{4}}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\frac{{\color{DarkCyan}- 160 x^{4}}}{{\color{Magenta}5 x}} = {\color{DarkCyan}- 32 x^{3}}\\&&&&&&-\phantom{- 160 x^{4}}&&&&&\\&&&&&&- 160 x^{4}&- 320 x^{3}&&&&{\color{DarkCyan}- 32 x^{3}} \left(5 x+10\right) = - 160 x^{4}- 320 x^{3}\\\hline\\&&&&&&&320 x^{3}&- 4 x^{2}&+0 x&+2&\end{array}

Step 7

Divide the leading term of the obtained remainder by the leading term of the divisor: 320x35x=64x2\frac{320 x^{3}}{5 x} = 64 x^{2}.

Write down the calculated result in the upper part of the table.

Multiply it by the divisor: 64x2(5x+10)=320x3+640x264 x^{2} \left(5 x+10\right) = 320 x^{3}+640 x^{2}.

Subtract the remainder from the obtained result: (320x34x2+2)(320x3+640x2)=644x2+2\left(320 x^{3}- 4 x^{2}+2\right) - \left(320 x^{3}+640 x^{2}\right) = - 644 x^{2}+2.

x82x7+4x68x5+16x432x3+64x25x+105x9+0x8+0x7+0x6+0x5+0x4+0x34x2+0x+25x95x9+10x810x8+0x7+0x6+0x5+0x4+0x34x2+0x+210x810x820x720x7+0x6+0x5+0x4+0x34x2+0x+220x720x7+40x640x6+0x5+0x4+0x34x2+0x+240x640x680x580x5+0x4+0x34x2+0x+280x580x5+160x4160x4+0x34x2+0x+2160x4160x4320x3320x34x2+0x+2320x35x=64x2320x3320x3+640x264x2(5x+10)=320x3+640x2644x2+0x+2\begin{array}{r|rrrrrrrrrr:c}&x^{8}&- 2 x^{7}&+4 x^{6}&- 8 x^{5}&+16 x^{4}&- 32 x^{3}&{\color{BlueViolet}+64 x^{2}}&&&&\\\hline\\{\color{Magenta}5 x}+10&5 x^{9}&+0 x^{8}&+0 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&-\phantom{5 x^{9}}&&&&&&&&&&\\&5 x^{9}&+10 x^{8}&&&&&&&&&\\\hline\\&&- 10 x^{8}&+0 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&-\phantom{- 10 x^{8}}&&&&&&&&&\\&&- 10 x^{8}&- 20 x^{7}&&&&&&&&\\\hline\\&&&20 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&&-\phantom{20 x^{7}}&&&&&&&&\\&&&20 x^{7}&+40 x^{6}&&&&&&&\\\hline\\&&&&- 40 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&&&-\phantom{- 40 x^{6}}&&&&&&&\\&&&&- 40 x^{6}&- 80 x^{5}&&&&&&\\\hline\\&&&&&80 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&&&&-\phantom{80 x^{5}}&&&&&&\\&&&&&80 x^{5}&+160 x^{4}&&&&&\\\hline\\&&&&&&- 160 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&&&&&-\phantom{- 160 x^{4}}&&&&&\\&&&&&&- 160 x^{4}&- 320 x^{3}&&&&\\\hline\\&&&&&&&{\color{BlueViolet}320 x^{3}}&- 4 x^{2}&+0 x&+2&\frac{{\color{BlueViolet}320 x^{3}}}{{\color{Magenta}5 x}} = {\color{BlueViolet}64 x^{2}}\\&&&&&&&-\phantom{320 x^{3}}&&&&\\&&&&&&&320 x^{3}&+640 x^{2}&&&{\color{BlueViolet}64 x^{2}} \left(5 x+10\right) = 320 x^{3}+640 x^{2}\\\hline\\&&&&&&&&- 644 x^{2}&+0 x&+2&\end{array}

Step 8

Divide the leading term of the obtained remainder by the leading term of the divisor: 644x25x=644x5\frac{- 644 x^{2}}{5 x} = - \frac{644 x}{5}.

Write down the calculated result in the upper part of the table.

Multiply it by the divisor: 644x5(5x+10)=644x21288x- \frac{644 x}{5} \left(5 x+10\right) = - 644 x^{2}- 1288 x.

Subtract the remainder from the obtained result: (644x2+2)(644x21288x)=1288x+2\left(- 644 x^{2}+2\right) - \left(- 644 x^{2}- 1288 x\right) = 1288 x+2.

x82x7+4x68x5+16x432x3+64x2644x55x+105x9+0x8+0x7+0x6+0x5+0x4+0x34x2+0x+25x95x9+10x810x8+0x7+0x6+0x5+0x4+0x34x2+0x+210x810x820x720x7+0x6+0x5+0x4+0x34x2+0x+220x720x7+40x640x6+0x5+0x4+0x34x2+0x+240x640x680x580x5+0x4+0x34x2+0x+280x580x5+160x4160x4+0x34x2+0x+2160x4160x4320x3320x34x2+0x+2320x3320x3+640x2644x2+0x+2644x25x=644x5644x2644x21288x644x5(5x+10)=644x21288x1288x+2\begin{array}{r|rrrrrrrrrr:c}&x^{8}&- 2 x^{7}&+4 x^{6}&- 8 x^{5}&+16 x^{4}&- 32 x^{3}&+64 x^{2}&{\color{OrangeRed}- \frac{644 x}{5}}&&&\\\hline\\{\color{Magenta}5 x}+10&5 x^{9}&+0 x^{8}&+0 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&-\phantom{5 x^{9}}&&&&&&&&&&\\&5 x^{9}&+10 x^{8}&&&&&&&&&\\\hline\\&&- 10 x^{8}&+0 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&-\phantom{- 10 x^{8}}&&&&&&&&&\\&&- 10 x^{8}&- 20 x^{7}&&&&&&&&\\\hline\\&&&20 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&&-\phantom{20 x^{7}}&&&&&&&&\\&&&20 x^{7}&+40 x^{6}&&&&&&&\\\hline\\&&&&- 40 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&&&-\phantom{- 40 x^{6}}&&&&&&&\\&&&&- 40 x^{6}&- 80 x^{5}&&&&&&\\\hline\\&&&&&80 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&&&&-\phantom{80 x^{5}}&&&&&&\\&&&&&80 x^{5}&+160 x^{4}&&&&&\\\hline\\&&&&&&- 160 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&&&&&-\phantom{- 160 x^{4}}&&&&&\\&&&&&&- 160 x^{4}&- 320 x^{3}&&&&\\\hline\\&&&&&&&320 x^{3}&- 4 x^{2}&+0 x&+2&\\&&&&&&&-\phantom{320 x^{3}}&&&&\\&&&&&&&320 x^{3}&+640 x^{2}&&&\\\hline\\&&&&&&&&{\color{OrangeRed}- 644 x^{2}}&+0 x&+2&\frac{{\color{OrangeRed}- 644 x^{2}}}{{\color{Magenta}5 x}} = {\color{OrangeRed}- \frac{644 x}{5}}\\&&&&&&&&-\phantom{- 644 x^{2}}&&&\\&&&&&&&&- 644 x^{2}&- 1288 x&&{\color{OrangeRed}- \frac{644 x}{5}} \left(5 x+10\right) = - 644 x^{2}- 1288 x\\\hline\\&&&&&&&&&1288 x&+2&\end{array}

Step 9

Divide the leading term of the obtained remainder by the leading term of the divisor: 1288x5x=12885\frac{1288 x}{5 x} = \frac{1288}{5}.

Write down the calculated result in the upper part of the table.

Multiply it by the divisor: 1288(5x+10)5=1288x+2576\frac{1288 \left(5 x+10\right)}{5} = 1288 x+2576.

Subtract the remainder from the obtained result: (1288x+2)(1288x+2576)=2574\left(1288 x+2\right) - \left(1288 x+2576\right) = -2574.

x82x7+4x68x5+16x432x3+64x2644x5+128855x+105x9+0x8+0x7+0x6+0x5+0x4+0x34x2+0x+25x95x9+10x810x8+0x7+0x6+0x5+0x4+0x34x2+0x+210x810x820x720x7+0x6+0x5+0x4+0x34x2+0x+220x720x7+40x640x6+0x5+0x4+0x34x2+0x+240x640x680x580x5+0x4+0x34x2+0x+280x580x5+160x4160x4+0x34x2+0x+2160x4160x4320x3320x34x2+0x+2320x3320x3+640x2644x2+0x+2644x2644x21288x1288x+21288x5x=128851288x1288x+257612885(5x+10)=1288x+25762574\begin{array}{r|rrrrrrrrrr:c}&x^{8}&- 2 x^{7}&+4 x^{6}&- 8 x^{5}&+16 x^{4}&- 32 x^{3}&+64 x^{2}&- \frac{644 x}{5}&{\color{GoldenRod}+\frac{1288}{5}}&&\\\hline\\{\color{Magenta}5 x}+10&5 x^{9}&+0 x^{8}&+0 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&-\phantom{5 x^{9}}&&&&&&&&&&\\&5 x^{9}&+10 x^{8}&&&&&&&&&\\\hline\\&&- 10 x^{8}&+0 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&-\phantom{- 10 x^{8}}&&&&&&&&&\\&&- 10 x^{8}&- 20 x^{7}&&&&&&&&\\\hline\\&&&20 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&&-\phantom{20 x^{7}}&&&&&&&&\\&&&20 x^{7}&+40 x^{6}&&&&&&&\\\hline\\&&&&- 40 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&&&-\phantom{- 40 x^{6}}&&&&&&&\\&&&&- 40 x^{6}&- 80 x^{5}&&&&&&\\\hline\\&&&&&80 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&&&&-\phantom{80 x^{5}}&&&&&&\\&&&&&80 x^{5}&+160 x^{4}&&&&&\\\hline\\&&&&&&- 160 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\\&&&&&&-\phantom{- 160 x^{4}}&&&&&\\&&&&&&- 160 x^{4}&- 320 x^{3}&&&&\\\hline\\&&&&&&&320 x^{3}&- 4 x^{2}&+0 x&+2&\\&&&&&&&-\phantom{320 x^{3}}&&&&\\&&&&&&&320 x^{3}&+640 x^{2}&&&\\\hline\\&&&&&&&&- 644 x^{2}&+0 x&+2&\\&&&&&&&&-\phantom{- 644 x^{2}}&&&\\&&&&&&&&- 644 x^{2}&- 1288 x&&\\\hline\\&&&&&&&&&{\color{GoldenRod}1288 x}&+2&\frac{{\color{GoldenRod}1288 x}}{{\color{Magenta}5 x}} = {\color{GoldenRod}\frac{1288}{5}}\\&&&&&&&&&-\phantom{1288 x}&&\\&&&&&&&&&1288 x&+2576&{\color{GoldenRod}\frac{1288}{5}} \left(5 x+10\right) = 1288 x+2576\\\hline\\&&&&&&&&&&-2574&\end{array}

Since the degree of the remainder is less than the degree of the divisor, we are done.

The resulting table is shown once more:

x82x7+4x68x5+16x432x3+64x2644x5+12885Hints5x+105x9+0x8+0x7+0x6+0x5+0x4+0x34x2+0x+25x95x=x85x95x9+10x8x8(5x+10)=5x9+10x810x8+0x7+0x6+0x5+0x4+0x34x2+0x+210x85x=2x710x810x820x72x7(5x+10)=10x820x720x7+0x6+0x5+0x4+0x34x2+0x+220x75x=4x620x720x7+40x64x6(5x+10)=20x7+40x640x6+0x5+0x4+0x34x2+0x+240x65x=8x540x640x680x58x5(5x+10)=40x680x580x5+0x4+0x34x2+0x+280x55x=16x480x580x5+160x416x4(5x+10)=80x5+160x4160x4+0x34x2+0x+2160x45x=32x3160x4160x4320x332x3(5x+10)=160x4320x3320x34x2+0x+2320x35x=64x2320x3320x3+640x264x2(5x+10)=320x3+640x2644x2+0x+2644x25x=644x5644x2644x21288x644x5(5x+10)=644x21288x1288x+21288x5x=128851288x1288x+257612885(5x+10)=1288x+25762574\begin{array}{r|rrrrrrrrrr:c}&{\color{Green}x^{8}}&{\color{Blue}- 2 x^{7}}&{\color{Violet}+4 x^{6}}&{\color{Chartreuse}- 8 x^{5}}&{\color{Fuchsia}+16 x^{4}}&{\color{DarkCyan}- 32 x^{3}}&{\color{BlueViolet}+64 x^{2}}&{\color{OrangeRed}- \frac{644 x}{5}}&{\color{GoldenRod}+\frac{1288}{5}}&&\text{Hints}\\\hline\\{\color{Magenta}5 x}+10&{\color{Green}5 x^{9}}&+0 x^{8}&+0 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\frac{{\color{Green}5 x^{9}}}{{\color{Magenta}5 x}} = {\color{Green}x^{8}}\\&-\phantom{5 x^{9}}&&&&&&&&&&\\&5 x^{9}&+10 x^{8}&&&&&&&&&{\color{Green}x^{8}} \left(5 x+10\right) = 5 x^{9}+10 x^{8}\\\hline\\&&{\color{Blue}- 10 x^{8}}&+0 x^{7}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\frac{{\color{Blue}- 10 x^{8}}}{{\color{Magenta}5 x}} = {\color{Blue}- 2 x^{7}}\\&&-\phantom{- 10 x^{8}}&&&&&&&&&\\&&- 10 x^{8}&- 20 x^{7}&&&&&&&&{\color{Blue}- 2 x^{7}} \left(5 x+10\right) = - 10 x^{8}- 20 x^{7}\\\hline\\&&&{\color{Violet}20 x^{7}}&+0 x^{6}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\frac{{\color{Violet}20 x^{7}}}{{\color{Magenta}5 x}} = {\color{Violet}4 x^{6}}\\&&&-\phantom{20 x^{7}}&&&&&&&&\\&&&20 x^{7}&+40 x^{6}&&&&&&&{\color{Violet}4 x^{6}} \left(5 x+10\right) = 20 x^{7}+40 x^{6}\\\hline\\&&&&{\color{Chartreuse}- 40 x^{6}}&+0 x^{5}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\frac{{\color{Chartreuse}- 40 x^{6}}}{{\color{Magenta}5 x}} = {\color{Chartreuse}- 8 x^{5}}\\&&&&-\phantom{- 40 x^{6}}&&&&&&&\\&&&&- 40 x^{6}&- 80 x^{5}&&&&&&{\color{Chartreuse}- 8 x^{5}} \left(5 x+10\right) = - 40 x^{6}- 80 x^{5}\\\hline\\&&&&&{\color{Fuchsia}80 x^{5}}&+0 x^{4}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\frac{{\color{Fuchsia}80 x^{5}}}{{\color{Magenta}5 x}} = {\color{Fuchsia}16 x^{4}}\\&&&&&-\phantom{80 x^{5}}&&&&&&\\&&&&&80 x^{5}&+160 x^{4}&&&&&{\color{Fuchsia}16 x^{4}} \left(5 x+10\right) = 80 x^{5}+160 x^{4}\\\hline\\&&&&&&{\color{DarkCyan}- 160 x^{4}}&+0 x^{3}&- 4 x^{2}&+0 x&+2&\frac{{\color{DarkCyan}- 160 x^{4}}}{{\color{Magenta}5 x}} = {\color{DarkCyan}- 32 x^{3}}\\&&&&&&-\phantom{- 160 x^{4}}&&&&&\\&&&&&&- 160 x^{4}&- 320 x^{3}&&&&{\color{DarkCyan}- 32 x^{3}} \left(5 x+10\right) = - 160 x^{4}- 320 x^{3}\\\hline\\&&&&&&&{\color{BlueViolet}320 x^{3}}&- 4 x^{2}&+0 x&+2&\frac{{\color{BlueViolet}320 x^{3}}}{{\color{Magenta}5 x}} = {\color{BlueViolet}64 x^{2}}\\&&&&&&&-\phantom{320 x^{3}}&&&&\\&&&&&&&320 x^{3}&+640 x^{2}&&&{\color{BlueViolet}64 x^{2}} \left(5 x+10\right) = 320 x^{3}+640 x^{2}\\\hline\\&&&&&&&&{\color{OrangeRed}- 644 x^{2}}&+0 x&+2&\frac{{\color{OrangeRed}- 644 x^{2}}}{{\color{Magenta}5 x}} = {\color{OrangeRed}- \frac{644 x}{5}}\\&&&&&&&&-\phantom{- 644 x^{2}}&&&\\&&&&&&&&- 644 x^{2}&- 1288 x&&{\color{OrangeRed}- \frac{644 x}{5}} \left(5 x+10\right) = - 644 x^{2}- 1288 x\\\hline\\&&&&&&&&&{\color{GoldenRod}1288 x}&+2&\frac{{\color{GoldenRod}1288 x}}{{\color{Magenta}5 x}} = {\color{GoldenRod}\frac{1288}{5}}\\&&&&&&&&&-\phantom{1288 x}&&\\&&&&&&&&&1288 x&+2576&{\color{GoldenRod}\frac{1288}{5}} \left(5 x+10\right) = 1288 x+2576\\\hline\\&&&&&&&&&&-2574&\end{array}

Therefore, 5x94x2+25x+10=(x82x7+4x68x5+16x432x3+64x2644x5+12885)+25745x+10.\frac{5 x^{9} - 4 x^{2} + 2}{5 x + 10} = \left(x^{8} - 2 x^{7} + 4 x^{6} - 8 x^{5} + 16 x^{4} - 32 x^{3} + 64 x^{2} - \frac{644 x}{5} + \frac{1288}{5}\right) + \frac{-2574}{5 x + 10}.

Answer

5x94x2+25x+10=(x82x7+4x68x5+16x432x3+64x2644x5+12885)+25745x+10\frac{5 x^{9} - 4 x^{2} + 2}{5 x + 10} = \left(x^{8} - 2 x^{7} + 4 x^{6} - 8 x^{5} + 16 x^{4} - 32 x^{3} + 64 x^{2} - \frac{644 x}{5} + \frac{1288}{5}\right) + \frac{-2574}{5 x + 10}A