Ellipse Calculator

Solve ellipses step by step

This calculator will find either the equation of the ellipse from the given parameters or the center, foci, vertices (major vertices), co-vertices (minor vertices), (semi)major axis length, (semi)minor axis length, area, circumference, latera recta, length of the latera recta (focal width), focal parameter, eccentricity, linear eccentricity (focal distance), directrices, x-intercepts, y-intercepts, domain, and range of the entered ellipse. Also, it will graph the ellipse. Steps are available.

Related calculators: Parabola Calculator, Circle Calculator, Hyperbola Calculator, Conic Section Calculator

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find the center, foci, vertices, co-vertices, major axis length, semi-major axis length, minor axis length, semi-minor axis length, area, circumference, latera recta, length of the latera recta (focal width), focal parameter, eccentricity, linear eccentricity (focal distance), directrices, x-intercepts, y-intercepts, domain, and range of the ellipse 4x2+9y2=364 x^{2} + 9 y^{2} = 36.

Solution

The equation of an ellipse is (xh)2a2+(yk)2b2=1\frac{\left(x - h\right)^{2}}{a^{2}} + \frac{\left(y - k\right)^{2}}{b^{2}} = 1, where (h,k)\left(h, k\right) is the center, aa and bb are the lengths of the semi-major and the semi-minor axes.

Our ellipse in this form is (x0)29+(y0)24=1\frac{\left(x - 0\right)^{2}}{9} + \frac{\left(y - 0\right)^{2}}{4} = 1.

Thus, h=0h = 0, k=0k = 0, a=3a = 3, b=2b = 2.

The standard form is x232+y222=1\frac{x^{2}}{3^{2}} + \frac{y^{2}}{2^{2}} = 1.

The vertex form is x29+y24=1\frac{x^{2}}{9} + \frac{y^{2}}{4} = 1.

The general form is 4x2+9y236=04 x^{2} + 9 y^{2} - 36 = 0.

The linear eccentricity (focal distance) is c=a2b2=5c = \sqrt{a^{2} - b^{2}} = \sqrt{5}.

The eccentricity is e=ca=53e = \frac{c}{a} = \frac{\sqrt{5}}{3}.

The first focus is (hc,k)=(5,0)\left(h - c, k\right) = \left(- \sqrt{5}, 0\right).

The second focus is (h+c,k)=(5,0)\left(h + c, k\right) = \left(\sqrt{5}, 0\right).

The first vertex is (ha,k)=(3,0)\left(h - a, k\right) = \left(-3, 0\right).

The second vertex is (h+a,k)=(3,0)\left(h + a, k\right) = \left(3, 0\right).

The first co-vertex is (h,kb)=(0,2)\left(h, k - b\right) = \left(0, -2\right).

The second co-vertex is (h,k+b)=(0,2)\left(h, k + b\right) = \left(0, 2\right).

The length of the major axis is 2a=62 a = 6.

The length of the minor axis is 2b=42 b = 4.

The area is πab=6π\pi a b = 6 \pi.

The circumference is 4aE(π2|e2)=12E(59)4 a E\left(\frac{\pi}{2}\middle| e^{2}\right) = 12 E\left(\frac{5}{9}\right).

The focal parameter is the distance between the focus and the directrix: b2c=455\frac{b^{2}}{c} = \frac{4 \sqrt{5}}{5}.

The latera recta are the lines parallel to the minor axis that pass through the foci.

The first latus rectum is x=5x = - \sqrt{5}.

The second latus rectum is x=5x = \sqrt{5}.

The endpoints of the first latus rectum can be found by solving the system {4x2+9y236=0x=5\begin{cases} 4 x^{2} + 9 y^{2} - 36 = 0 \\ x = - \sqrt{5} \end{cases} (for steps, see system of equations calculator).

The endpoints of the first latus rectum are (5,43)\left(- \sqrt{5}, - \frac{4}{3}\right), (5,43)\left(- \sqrt{5}, \frac{4}{3}\right).

The endpoints of the second latus rectum can be found by solving the system {4x2+9y236=0x=5\begin{cases} 4 x^{2} + 9 y^{2} - 36 = 0 \\ x = \sqrt{5} \end{cases} (for steps, see system of equations calculator).

The endpoints of the second latus rectum are (5,43)\left(\sqrt{5}, - \frac{4}{3}\right), (5,43)\left(\sqrt{5}, \frac{4}{3}\right).

The length of the latera recta (focal width) is 2b2a=83\frac{2 b^{2}}{a} = \frac{8}{3}.

The first directrix is x=ha2c=955x = h - \frac{a^{2}}{c} = - \frac{9 \sqrt{5}}{5}.

The second directrix is x=h+a2c=955x = h + \frac{a^{2}}{c} = \frac{9 \sqrt{5}}{5}.

The x-intercepts can be found by setting y=0y = 0 in the equation and solving for xx (for steps, see intercepts calculator).

x-intercepts: (3,0)\left(-3, 0\right), (3,0)\left(3, 0\right)

The y-intercepts can be found by setting x=0x = 0 in the equation and solving for yy: (for steps, see intercepts calculator).

y-intercepts: (0,2)\left(0, -2\right), (0,2)\left(0, 2\right)

The domain is [ha,h+a]=[3,3]\left[h - a, h + a\right] = \left[-3, 3\right].

The range is [kb,k+b]=[2,2]\left[k - b, k + b\right] = \left[-2, 2\right].

Answer

Standard form/equation: x232+y222=1\frac{x^{2}}{3^{2}} + \frac{y^{2}}{2^{2}} = 1A.

Vertex form/equation: x29+y24=1\frac{x^{2}}{9} + \frac{y^{2}}{4} = 1A.

General form/equation: 4x2+9y236=04 x^{2} + 9 y^{2} - 36 = 0A.

First focus-directrix form/equation: (x+5)2+y2=5(x+955)29\left(x + \sqrt{5}\right)^{2} + y^{2} = \frac{5 \left(x + \frac{9 \sqrt{5}}{5}\right)^{2}}{9}A.

Second focus-directrix form/equation: (x5)2+y2=5(x955)29\left(x - \sqrt{5}\right)^{2} + y^{2} = \frac{5 \left(x - \frac{9 \sqrt{5}}{5}\right)^{2}}{9}A.

Graph: see the graphing calculator.

Center: (0,0)\left(0, 0\right)A.

First focus: (5,0)(2.23606797749979,0)\left(- \sqrt{5}, 0\right)\approx \left(-2.23606797749979, 0\right)A.

Second focus: (5,0)(2.23606797749979,0)\left(\sqrt{5}, 0\right)\approx \left(2.23606797749979, 0\right)A.

First vertex: (3,0)\left(-3, 0\right)A.

Second vertex: (3,0)\left(3, 0\right)A.

First co-vertex: (0,2)\left(0, -2\right)A.

Second co-vertex: (0,2)\left(0, 2\right)A.

Major axis length: 66A.

Semi-major axis length: 33A.

Minor axis length: 44A.

Semi-minor axis length: 22A.

Area: 6π18.8495559215387596 \pi\approx 18.849555921538759A.

Circumference: 12E(59)15.8654395892905912 E\left(\frac{5}{9}\right)\approx 15.86543958929059A.

First latus rectum: x=52.23606797749979x = - \sqrt{5}\approx -2.23606797749979A.

Second latus rectum: x=52.23606797749979x = \sqrt{5}\approx 2.23606797749979A.

Endpoints of the first latus rectum: (5,43)(2.23606797749979,1.333333333333333)\left(- \sqrt{5}, - \frac{4}{3}\right)\approx \left(-2.23606797749979, -1.333333333333333\right), (5,43)(2.23606797749979,1.333333333333333)\left(- \sqrt{5}, \frac{4}{3}\right)\approx \left(-2.23606797749979, 1.333333333333333\right)A.

Endpoints of the second latus rectum: (5,43)(2.23606797749979,1.333333333333333)\left(\sqrt{5}, - \frac{4}{3}\right)\approx \left(2.23606797749979, -1.333333333333333\right), (5,43)(2.23606797749979,1.333333333333333)\left(\sqrt{5}, \frac{4}{3}\right)\approx \left(2.23606797749979, 1.333333333333333\right)A.

Length of the latera recta (focal width): 832.666666666666667\frac{8}{3}\approx 2.666666666666667A.

Focal parameter: 4551.788854381999832\frac{4 \sqrt{5}}{5}\approx 1.788854381999832A.

Eccentricity: 530.74535599249993\frac{\sqrt{5}}{3}\approx 0.74535599249993A.

Linear eccentricity (focal distance): 52.23606797749979\sqrt{5}\approx 2.23606797749979A.

First directrix: x=9554.024922359499621x = - \frac{9 \sqrt{5}}{5}\approx -4.024922359499621A.

Second directrix: x=9554.024922359499621x = \frac{9 \sqrt{5}}{5}\approx 4.024922359499621A.

x-intercepts: (3,0)\left(-3, 0\right), (3,0)\left(3, 0\right)A.

y-intercepts: (0,2)\left(0, -2\right), (0,2)\left(0, 2\right)A.

Domain: [3,3]\left[-3, 3\right]A.

Range: [2,2]\left[-2, 2\right]A.