Hyperbola Calculator

Solve hyperbolas step by step

This calculator will find either the equation of the hyperbola from the given parameters or the center, foci, vertices, co-vertices, (semi)major axis length, (semi)minor axis length, latera recta, length of the latera recta (focal width), focal parameter, eccentricity, linear eccentricity (focal distance), directrices, asymptotes, x-intercepts, y-intercepts, domain, and range of the entered hyperbola. Also, it will graph the hyperbola. Steps are available.

Related calculators: Parabola Calculator, Circle Calculator, Ellipse Calculator, Conic Section Calculator

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find the center, foci, vertices, co-vertices, major axis length, semi-major axis length, minor axis length, semi-minor axis length, latera recta, length of the latera recta (focal width), focal parameter, eccentricity, linear eccentricity (focal distance), directrices, asymptotes, x-intercepts, y-intercepts, domain, and range of the hyperbola x24y2=36x^{2} - 4 y^{2} = 36.

Solution

The equation of a hyperbola is (xh)2a2(yk)2b2=1\frac{\left(x - h\right)^{2}}{a^{2}} - \frac{\left(y - k\right)^{2}}{b^{2}} = 1, where (h,k)\left(h, k\right) is the center, aa and bb are the lengths of the semi-major and the semi-minor axes.

Our hyperbola in this form is (x0)236(y0)29=1\frac{\left(x - 0\right)^{2}}{36} - \frac{\left(y - 0\right)^{2}}{9} = 1.

Thus, h=0h = 0, k=0k = 0, a=6a = 6, b=3b = 3.

The standard form is x262y232=1\frac{x^{2}}{6^{2}} - \frac{y^{2}}{3^{2}} = 1.

The vertex form is x236y29=1\frac{x^{2}}{36} - \frac{y^{2}}{9} = 1.

The general form is x24y236=0x^{2} - 4 y^{2} - 36 = 0.

The linear eccentricity (focal distance) is c=a2+b2=35c = \sqrt{a^{2} + b^{2}} = 3 \sqrt{5}.

The eccentricity is e=ca=52e = \frac{c}{a} = \frac{\sqrt{5}}{2}.

The first focus is (hc,k)=(35,0)\left(h - c, k\right) = \left(- 3 \sqrt{5}, 0\right).

The second focus is (h+c,k)=(35,0)\left(h + c, k\right) = \left(3 \sqrt{5}, 0\right).

The first vertex is (ha,k)=(6,0)\left(h - a, k\right) = \left(-6, 0\right).

The second vertex is (h+a,k)=(6,0)\left(h + a, k\right) = \left(6, 0\right).

The first co-vertex is (h,kb)=(0,3)\left(h, k - b\right) = \left(0, -3\right).

The second co-vertex is (h,k+b)=(0,3)\left(h, k + b\right) = \left(0, 3\right).

The length of the major axis is 2a=122 a = 12.

The length of the minor axis is 2b=62 b = 6.

The focal parameter is the distance between the focus and the directrix: b2c=355\frac{b^{2}}{c} = \frac{3 \sqrt{5}}{5}.

The latera recta are the lines parallel to the minor axis that pass through the foci.

The first latus rectum is x=35x = - 3 \sqrt{5}.

The second latus rectum is x=35x = 3 \sqrt{5}.

The endpoints of the first latus rectum can be found by solving the system {x24y236=0x=35\begin{cases} x^{2} - 4 y^{2} - 36 = 0 \\ x = - 3 \sqrt{5} \end{cases} (for steps, see system of equations calculator).

The endpoints of the first latus rectum are (35,32)\left(- 3 \sqrt{5}, - \frac{3}{2}\right), (35,32)\left(- 3 \sqrt{5}, \frac{3}{2}\right).

The endpoints of the second latus rectum can be found by solving the system {x24y236=0x=35\begin{cases} x^{2} - 4 y^{2} - 36 = 0 \\ x = 3 \sqrt{5} \end{cases} (for steps, see system of equations calculator).

The endpoints of the second latus rectum are (35,32)\left(3 \sqrt{5}, - \frac{3}{2}\right), (35,32)\left(3 \sqrt{5}, \frac{3}{2}\right).

The length of the latera recta (focal width) is 2b2a=3\frac{2 b^{2}}{a} = 3.

The first directrix is x=ha2c=1255x = h - \frac{a^{2}}{c} = - \frac{12 \sqrt{5}}{5}.

The second directrix is x=h+a2c=1255x = h + \frac{a^{2}}{c} = \frac{12 \sqrt{5}}{5}.

The first asymptote is y=ba(xh)+k=x2y = - \frac{b}{a} \left(x - h\right) + k = - \frac{x}{2}.

The second asymptote is y=ba(xh)+k=x2y = \frac{b}{a} \left(x - h\right) + k = \frac{x}{2}.

The x-intercepts can be found by setting y=0y = 0 in the equation and solving for xx (for steps, see intercepts calculator).

x-intercepts: (6,0)\left(-6, 0\right), (6,0)\left(6, 0\right)

The y-intercepts can be found by setting x=0x = 0 in the equation and solving for yy: (for steps, see intercepts calculator).

Since there are no real solutions, there are no y-intercepts.

Answer

Standard form/equation: x262y232=1\frac{x^{2}}{6^{2}} - \frac{y^{2}}{3^{2}} = 1A.

Vertex form/equation: x236y29=1\frac{x^{2}}{36} - \frac{y^{2}}{9} = 1A.

General form/equation: x24y236=0x^{2} - 4 y^{2} - 36 = 0A.

First focus-directrix form/equation: (x+35)2+y2=5(x+1255)24\left(x + 3 \sqrt{5}\right)^{2} + y^{2} = \frac{5 \left(x + \frac{12 \sqrt{5}}{5}\right)^{2}}{4}A.

Second focus-directrix form/equation: (x35)2+y2=5(x1255)24\left(x - 3 \sqrt{5}\right)^{2} + y^{2} = \frac{5 \left(x - \frac{12 \sqrt{5}}{5}\right)^{2}}{4}A.

Graph: see the graphing calculator.

Center: (0,0)\left(0, 0\right)A.

First focus: (35,0)(6.708203932499369,0)\left(- 3 \sqrt{5}, 0\right)\approx \left(-6.708203932499369, 0\right)A.

Second focus: (35,0)(6.708203932499369,0)\left(3 \sqrt{5}, 0\right)\approx \left(6.708203932499369, 0\right)A.

First vertex: (6,0)\left(-6, 0\right)A.

Second vertex: (6,0)\left(6, 0\right)A.

First co-vertex: (0,3)\left(0, -3\right)A.

Second co-vertex: (0,3)\left(0, 3\right)A.

Major (transverse) axis length: 1212A.

Semi-major axis length: 66A.

Minor (conjugate) axis length: 66A.

Semi-minor axis length: 33A.

First latus rectum: x=356.708203932499369x = - 3 \sqrt{5}\approx -6.708203932499369A.

Second latus rectum: x=356.708203932499369x = 3 \sqrt{5}\approx 6.708203932499369A.

Endpoints of the first latus rectum: (35,32)(6.708203932499369,1.5)\left(- 3 \sqrt{5}, - \frac{3}{2}\right)\approx \left(-6.708203932499369, -1.5\right), (35,32)(6.708203932499369,1.5)\left(- 3 \sqrt{5}, \frac{3}{2}\right)\approx \left(-6.708203932499369, 1.5\right)A.

Endpoints of the second latus rectum: (35,32)(6.708203932499369,1.5)\left(3 \sqrt{5}, - \frac{3}{2}\right)\approx \left(6.708203932499369, -1.5\right), (35,32)(6.708203932499369,1.5)\left(3 \sqrt{5}, \frac{3}{2}\right)\approx \left(6.708203932499369, 1.5\right)A.

Length of the latera recta (focal width): 33A.

Focal parameter: 3551.341640786499874\frac{3 \sqrt{5}}{5}\approx 1.341640786499874A.

Eccentricity: 521.118033988749895\frac{\sqrt{5}}{2}\approx 1.118033988749895A.

Linear eccentricity (focal distance): 356.7082039324993693 \sqrt{5}\approx 6.708203932499369A.

First directrix: x=12555.366563145999495x = - \frac{12 \sqrt{5}}{5}\approx -5.366563145999495A.

Second directrix: x=12555.366563145999495x = \frac{12 \sqrt{5}}{5}\approx 5.366563145999495A.

First asymptote: y=x2=0.5xy = - \frac{x}{2} = - 0.5 xA.

Second asymptote: y=x2=0.5xy = \frac{x}{2} = 0.5 xA.

x-intercepts: (6,0)\left(-6, 0\right), (6,0)\left(6, 0\right)A.

y-intercepts: no y-intercepts.

Domain: (,6][6,)\left(-\infty, -6\right] \cup \left[6, \infty\right)A.

Range: (,)\left(-\infty, \infty\right)A.