Hyperbolic Secant Calculator
Calculate the hyperbolic secant of a number
The calculator will find the hyperbolic secant of the given value.
The hyperbolic secant $$$y=\operatorname{sech}(x)$$$ is such a function that $$$y=\frac{1}{\cosh(x)}=\frac{2}{e^x+e^{-x}}$$$.
The domain of the hyperbolic secant is $$$(-\infty,\infty)$$$, the range is $$$(0,1]$$$.
It is an even function.
Related calculator: Inverse Hyperbolic Secant Calculator
Your Input
Find $$$\operatorname{sech}{\left(\frac{1}{3} \right)}$$$.
Answer
$$$\operatorname{sech}{\left(\frac{1}{3} \right)}\approx 0.946905253763498$$$A
For graph, see the graphing calculator.