Inverse Hyperbolic Cotangent Calculator

Calculate the inverse hyperbolic cotangent of a number

The calculator will find the inverse hyperbolic cotangent of the given value.

The inverse hyperbolic cotangent y=coth1(x)y=\coth^{-1}(x) or y=acoth(x)y=\operatorname{acoth}(x) or y=arccoth(x)y=\operatorname{arccoth}(x) is such a function that coth(y)=x\coth(y)=x.

It can be expressed in terms of elementary functions: y=coth1(x)=12ln(x+1x1)y=\coth^{-1}(x)=\frac{1}{2}\ln\left(\frac{x+1}{x-1}\right).

The domain of the inverse hyperbolic cotangent is (,1)(1,)(-\infty,-1)\cup(1,\infty), the range is (,0)(0,)(-\infty,0)\cup(0,\infty).

It is an odd function.

Related calculator: Hyperbolic Cotangent Calculator

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find acoth(5)\operatorname{acoth}{\left(5 \right)}.

Answer

acoth(5)0.202732554054082\operatorname{acoth}{\left(5 \right)}\approx 0.202732554054082A

For graph, see the graphing calculator.