Inverse Hyperbolic Secant Calculator

Calculate the inverse hyperbolic secant of a number

The calculator will find the inverse hyperbolic secant of the given value.

The inverse hyperbolic secant y=sech1(x)y=\operatorname{sech}^{-1}(x) or y=asech(x)y=\operatorname{asech}(x) or y=arcsech(x)y=\operatorname{arcsech}(x) is such a function that sech(y)=x\operatorname{sech}(y)=x.

It can be expressed in terms of elementary functions: y=sech1(x)=ln(1x+1x21)y=\operatorname{sech}^{-1}(x)=\ln\left(\frac{1}{x}+\sqrt{\frac{1}{x^2}-1}\right).

The domain of the inverse hyperbolic secant is (0,1](0,1], the range is [0,)[0,\infty).

This function is neither even nor odd.

Related calculator: Hyperbolic Secant Calculator

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find asech(15)\operatorname{asech}{\left(\frac{1}{5} \right)}.

Answer

asech(15)2.292431669561178\operatorname{asech}{\left(\frac{1}{5} \right)}\approx 2.292431669561178A

For graph, see the graphing calculator.