Inverse Hyperbolic Secant Calculator
Calculate the inverse hyperbolic secant of a number
The calculator will find the inverse hyperbolic secant of the given value.
The inverse hyperbolic secant $$$y=\operatorname{sech}^{-1}(x)$$$ or $$$y=\operatorname{asech}(x)$$$ or $$$y=\operatorname{arcsech}(x)$$$ is such a function that $$$\operatorname{sech}(y)=x$$$.
It can be expressed in terms of elementary functions: $$$y=\operatorname{sech}^{-1}(x)=\ln\left(\frac{1}{x}+\sqrt{\frac{1}{x^2}-1}\right)$$$.
The domain of the inverse hyperbolic secant is $$$(0,1]$$$, the range is $$$[0,\infty)$$$.
This function is neither even nor odd.
Related calculator: Hyperbolic Secant Calculator
Your Input
Find $$$\operatorname{asech}{\left(\frac{1}{5} \right)}$$$.
Answer
$$$\operatorname{asech}{\left(\frac{1}{5} \right)}\approx 2.292431669561178$$$A
For graph, see the graphing calculator.