Inverse Hyperbolic Sine Calculator
Calculate the inverse hyperbolic sine of a number
The calculator will find the inverse hyperbolic sine of the given value.
The inverse hyperbolic sine $$$y=\sinh^{-1}(x)$$$ or $$$y=\operatorname{asinh}(x)$$$ or $$$y=\operatorname{arcsinh}(x)$$$ is such a function that $$$\sinh(y)=x$$$.
It can be expressed in terms of elementary functions: $$$y=\sinh^{-1}(x)=\ln\left(x+\sqrt{x^2+1}\right)$$$.
The domain of the inverse hyperbolic sine is $$$(-\infty,\infty)$$$, the range is $$$(-\infty,\infty)$$$.
It is an odd function.
Related calculator: Hyperbolic Sine Calculator
Your Input
Find $$$\operatorname{asinh}{\left(- \frac{1}{4} \right)}$$$.
Answer
$$$\operatorname{asinh}{\left(- \frac{1}{4} \right)} = - \operatorname{asinh}{\left(\frac{1}{4} \right)}\approx -0.247466461547263$$$A
For graph, see the graphing calculator.