Operations on Functions Calculator
Perform operations on functions step by step
The calculator will add, subract, multiply, and divide two functions $$$f(x)$$$ and $$$g(x)$$$, with steps shown. It will also evaluate the resulting functions at the specified point if needed.
Related calculator: Composite Function Calculator
Your Input
Find the sum, difference, product, and quotient of $$$f{\left(x \right)} = 2 x - 1$$$ and $$$g{\left(x \right)} = 3 x + 5$$$.
Solution
$$$\left(f + g\right)\left(x\right) = {\color{red}\left(2 x - 1\right)} + {\color{red}\left(3 x + 5\right)} = 5 x + 4$$$
$$$\left(f - g\right)\left(x\right) = {\color{red}\left(2 x - 1\right)} - {\color{red}\left(3 x + 5\right)} = - x - 6$$$
$$$\left(f\cdot g\right)\left(x\right) = {\color{red}\left(2 x - 1\right)}\cdot {\color{red}\left(3 x + 5\right)} = \left(2 x - 1\right) \left(3 x + 5\right)$$$
$$$\left(\frac{f}{g}\right)\left(x\right) = \frac{{\color{red}\left(2 x - 1\right)}}{{\color{red}\left(3 x + 5\right)}} = \frac{2 x - 1}{3 x + 5}$$$
Answer
$$$\left(f + g\right)\left(x\right) = 5 x + 4$$$A
$$$\left(f - g\right)\left(x\right) = - x - 6$$$A
$$$\left(f\cdot g\right)\left(x\right) = \left(2 x - 1\right) \left(3 x + 5\right)$$$A
$$$\left(\frac{f}{g}\right)\left(x\right) = \frac{2 x - 1}{3 x + 5}$$$A