Operations on Functions Calculator

Perform operations on functions step by step

The calculator will add, subract, multiply, and divide two functions f(x)f(x) and g(x)g(x), with steps shown. It will also evaluate the resulting functions at the specified point if needed.

Related calculator: Composite Function Calculator

Optional.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find the sum, difference, product, and quotient of f(x)=2x1f{\left(x \right)} = 2 x - 1 and g(x)=3x+5g{\left(x \right)} = 3 x + 5.

Solution

(f+g)(x)=(2x1)+(3x+5)=5x+4\left(f + g\right)\left(x\right) = {\color{red}\left(2 x - 1\right)} + {\color{red}\left(3 x + 5\right)} = 5 x + 4

(fg)(x)=(2x1)(3x+5)=x6\left(f - g\right)\left(x\right) = {\color{red}\left(2 x - 1\right)} - {\color{red}\left(3 x + 5\right)} = - x - 6

(fg)(x)=(2x1)(3x+5)=(2x1)(3x+5)\left(f\cdot g\right)\left(x\right) = {\color{red}\left(2 x - 1\right)}\cdot {\color{red}\left(3 x + 5\right)} = \left(2 x - 1\right) \left(3 x + 5\right)

(fg)(x)=(2x1)(3x+5)=2x13x+5\left(\frac{f}{g}\right)\left(x\right) = \frac{{\color{red}\left(2 x - 1\right)}}{{\color{red}\left(3 x + 5\right)}} = \frac{2 x - 1}{3 x + 5}

Answer

(f+g)(x)=5x+4\left(f + g\right)\left(x\right) = 5 x + 4A

(fg)(x)=x6\left(f - g\right)\left(x\right) = - x - 6A

(fg)(x)=(2x1)(3x+5)\left(f\cdot g\right)\left(x\right) = \left(2 x - 1\right) \left(3 x + 5\right)A

(fg)(x)=2x13x+5\left(\frac{f}{g}\right)\left(x\right) = \frac{2 x - 1}{3 x + 5}A