Polar form of 8-8

The calculator will find the polar form of the complex number 8-8, with steps shown.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find the polar form of 8-8.

Solution

The standard form of the complex number is 8-8.

For a complex number a+bia + b i, the polar form is given by r(cos(θ)+isin(θ))r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right), where r=a2+b2r = \sqrt{a^{2} + b^{2}} and θ=atan(ba)\theta = \operatorname{atan}{\left(\frac{b}{a} \right)}.

We have that a=8a = -8 and b=0b = 0.

Thus, r=(8)2+02=8r = \sqrt{\left(-8\right)^{2} + 0^{2}} = 8.

Also, θ=atan(08)+π=π\theta = \operatorname{atan}{\left(\frac{0}{-8} \right)} + \pi = \pi.

Therefore, 8=8(cos(π)+isin(π))-8 = 8 \left(\cos{\left(\pi \right)} + i \sin{\left(\pi \right)}\right).

Answer

8=8(cos(π)+isin(π))=8(cos(180)+isin(180))-8 = 8 \left(\cos{\left(\pi \right)} + i \sin{\left(\pi \right)}\right) = 8 \left(\cos{\left(180^{\circ} \right)} + i \sin{\left(180^{\circ} \right)}\right)A