Polar form of $$$1$$$
Your Input
Find the polar form of $$$1$$$.
Solution
The standard form of the complex number is $$$1$$$.
For a complex number $$$a + b i$$$, the polar form is given by $$$r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right)$$$, where $$$r = \sqrt{a^{2} + b^{2}}$$$ and $$$\theta = \operatorname{atan}{\left(\frac{b}{a} \right)}$$$.
We have that $$$a = 1$$$ and $$$b = 0$$$.
Thus, $$$r = \sqrt{1^{2} + 0^{2}} = 1$$$.
Also, $$$\theta = \operatorname{atan}{\left(\frac{0}{1} \right)} = 0$$$.
Therefore, $$$1 = \cos{\left(0 \right)} + i \sin{\left(0 \right)}$$$.
Answer
$$$1 = \cos{\left(0 \right)} + i \sin{\left(0 \right)} = \cos{\left(0^{\circ} \right)} + i \sin{\left(0^{\circ} \right)}$$$A