Polar form of 81i81 i

The calculator will find the polar form of the complex number 81i81 i, with steps shown.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find the polar form of 81i81 i.

Solution

The standard form of the complex number is 81i81 i.

For a complex number a+bia + b i, the polar form is given by r(cos(θ)+isin(θ))r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right), where r=a2+b2r = \sqrt{a^{2} + b^{2}} and θ=atan(ba)\theta = \operatorname{atan}{\left(\frac{b}{a} \right)}.

We have that a=0a = 0 and b=81b = 81.

Thus, r=02+812=81r = \sqrt{0^{2} + 81^{2}} = 81.

Also, θ=atan(810)=π2\theta = \operatorname{atan}{\left(\frac{81}{0} \right)} = \frac{\pi}{2}.

Therefore, 81i=81(cos(π2)+isin(π2))81 i = 81 \left(\cos{\left(\frac{\pi}{2} \right)} + i \sin{\left(\frac{\pi}{2} \right)}\right).

Answer

81i=81(cos(π2)+isin(π2))=81(cos(90)+isin(90))81 i = 81 \left(\cos{\left(\frac{\pi}{2} \right)} + i \sin{\left(\frac{\pi}{2} \right)}\right) = 81 \left(\cos{\left(90^{\circ} \right)} + i \sin{\left(90^{\circ} \right)}\right)A