Critical Points and Extrema Calculator
Find critical points and extrema step by step
The calculator will try to find the critical (stationary) points, the relative (local) and absolute (global) maxima and minima of the single variable function. The interval can be specified.
Your input: find the local and global minima and maxima of $$$f=x^{4} - 6 x^{2}$$$
Critical Points
$$$\left(x, f \left(x \right)\right)=\left(- \sqrt{3},-9\right)\approx \left(-1.73205080756888,-9\right)$$$
$$$\left(x, f \left(x \right)\right)=\left(0,0\right)$$$
$$$\left(x, f \left(x \right)\right)=\left(\sqrt{3},-9\right)\approx \left(1.73205080756888,-9\right)$$$
Global (Absolute) Minima
$$$\left(x, f \left(x \right)\right)=\left(- \sqrt{3},-9\right)\approx \left(-1.73205080756888,-9\right)$$$
$$$\left(x, f \left(x \right)\right)=\left(\sqrt{3},-9\right)\approx \left(1.73205080756888,-9\right)$$$
Global (Absolute) Maxima
No global maxima.
Local Minima
$$$\left(x, f \left(x \right)\right)=\left(- \sqrt{3},-9\right)\approx \left(-1.73205080756888,-9\right)$$$
$$$\left(x, f \left(x \right)\right)=\left(\sqrt{3},-9\right)\approx \left(1.73205080756888,-9\right)$$$
Local Maxima
$$$\left(x, f \left(x \right)\right)=\left(0,0\right)$$$
Graph
For graph, see graphing calculator.