Derivative of $$$2 \sin{\left(t \right)}$$$
Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps
Your Input
Find $$$\frac{d}{dt} \left(2 \sin{\left(t \right)}\right)$$$.
Solution
Apply the constant multiple rule $$$\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right)$$$ with $$$c = 2$$$ and $$$f{\left(t \right)} = \sin{\left(t \right)}$$$:
$${\color{red}\left(\frac{d}{dt} \left(2 \sin{\left(t \right)}\right)\right)} = {\color{red}\left(2 \frac{d}{dt} \left(\sin{\left(t \right)}\right)\right)}$$The derivative of the sine is $$$\frac{d}{dt} \left(\sin{\left(t \right)}\right) = \cos{\left(t \right)}$$$:
$$2 {\color{red}\left(\frac{d}{dt} \left(\sin{\left(t \right)}\right)\right)} = 2 {\color{red}\left(\cos{\left(t \right)}\right)}$$Thus, $$$\frac{d}{dt} \left(2 \sin{\left(t \right)}\right) = 2 \cos{\left(t \right)}$$$.
Answer
$$$\frac{d}{dt} \left(2 \sin{\left(t \right)}\right) = 2 \cos{\left(t \right)}$$$A