Derivative of 2sin(t)2 \sin{\left(t \right)}

The calculator will find the derivative of 2sin(t)2 \sin{\left(t \right)}, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find ddt(2sin(t))\frac{d}{dt} \left(2 \sin{\left(t \right)}\right).

Solution

Apply the constant multiple rule ddt(cf(t))=cddt(f(t))\frac{d}{dt} \left(c f{\left(t \right)}\right) = c \frac{d}{dt} \left(f{\left(t \right)}\right) with c=2c = 2 and f(t)=sin(t)f{\left(t \right)} = \sin{\left(t \right)}:

(ddt(2sin(t)))=(2ddt(sin(t))){\color{red}\left(\frac{d}{dt} \left(2 \sin{\left(t \right)}\right)\right)} = {\color{red}\left(2 \frac{d}{dt} \left(\sin{\left(t \right)}\right)\right)}

The derivative of the sine is ddt(sin(t))=cos(t)\frac{d}{dt} \left(\sin{\left(t \right)}\right) = \cos{\left(t \right)}:

2(ddt(sin(t)))=2(cos(t))2 {\color{red}\left(\frac{d}{dt} \left(\sin{\left(t \right)}\right)\right)} = 2 {\color{red}\left(\cos{\left(t \right)}\right)}

Thus, ddt(2sin(t))=2cos(t)\frac{d}{dt} \left(2 \sin{\left(t \right)}\right) = 2 \cos{\left(t \right)}.

Answer

ddt(2sin(t))=2cos(t)\frac{d}{dt} \left(2 \sin{\left(t \right)}\right) = 2 \cos{\left(t \right)}A