Derivative of 2x+12 x + 1

The calculator will find the derivative of 2x+12 x + 1, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find ddx(2x+1)\frac{d}{dx} \left(2 x + 1\right).

Solution

The derivative of a sum/difference is the sum/difference of derivatives:

(ddx(2x+1))=(ddx(2x)+ddx(1)){\color{red}\left(\frac{d}{dx} \left(2 x + 1\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(2 x\right) + \frac{d}{dx} \left(1\right)\right)}

Apply the constant multiple rule ddx(cf(x))=cddx(f(x))\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right) with c=2c = 2 and f(x)=xf{\left(x \right)} = x:

(ddx(2x))+ddx(1)=(2ddx(x))+ddx(1){\color{red}\left(\frac{d}{dx} \left(2 x\right)\right)} + \frac{d}{dx} \left(1\right) = {\color{red}\left(2 \frac{d}{dx} \left(x\right)\right)} + \frac{d}{dx} \left(1\right)

Apply the power rule ddx(xn)=nxn1\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1} with n=1n = 1, in other words, ddx(x)=1\frac{d}{dx} \left(x\right) = 1:

2(ddx(x))+ddx(1)=2(1)+ddx(1)2 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + \frac{d}{dx} \left(1\right) = 2 {\color{red}\left(1\right)} + \frac{d}{dx} \left(1\right)

The derivative of a constant is 00:

(ddx(1))+2=(0)+2{\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + 2 = {\color{red}\left(0\right)} + 2

Thus, ddx(2x+1)=2\frac{d}{dx} \left(2 x + 1\right) = 2.

Answer

ddx(2x+1)=2\frac{d}{dx} \left(2 x + 1\right) = 2A