Derivative of acos(x)\operatorname{acos}{\left(x \right)}

The calculator will find the derivative of acos(x)\operatorname{acos}{\left(x \right)}, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find ddx(acos(x))\frac{d}{dx} \left(\operatorname{acos}{\left(x \right)}\right).

Solution

The derivative of the inverse cosine is ddx(acos(x))=11x2\frac{d}{dx} \left(\operatorname{acos}{\left(x \right)}\right) = - \frac{1}{\sqrt{1 - x^{2}}}:

(ddx(acos(x)))=(11x2){\color{red}\left(\frac{d}{dx} \left(\operatorname{acos}{\left(x \right)}\right)\right)} = {\color{red}\left(- \frac{1}{\sqrt{1 - x^{2}}}\right)}

Thus, ddx(acos(x))=11x2\frac{d}{dx} \left(\operatorname{acos}{\left(x \right)}\right) = - \frac{1}{\sqrt{1 - x^{2}}}.

Answer

ddx(acos(x))=11x2\frac{d}{dx} \left(\operatorname{acos}{\left(x \right)}\right) = - \frac{1}{\sqrt{1 - x^{2}}}A