The calculator will find the derivative of
cos(xy) with respect to
y, with steps shown.
Related calculators:
Logarithmic Differentiation Calculator,
Implicit Differentiation Calculator with Steps
Solution
The function cos(xy) is the composition f(g(y)) of two functions f(u)=cos(u) and g(y)=xy.
Apply the chain rule dyd(f(g(y)))=dud(f(u))dyd(g(y)):
(dyd(cos(xy)))=(dud(cos(u))dyd(xy))The derivative of the cosine is dud(cos(u))=−sin(u):
(dud(cos(u)))dyd(xy)=(−sin(u))dyd(xy)Return to the old variable:
−sin((u))dyd(xy)=−sin((xy))dyd(xy)Apply the constant multiple rule dyd(cf(y))=cdyd(f(y)) with c=x and f(y)=y:
−sin(xy)(dyd(xy))=−sin(xy)(xdyd(y))Apply the power rule dyd(yn)=nyn−1 with n=1, in other words, dyd(y)=1:
−xsin(xy)(dyd(y))=−xsin(xy)(1)Thus, dyd(cos(xy))=−xsin(xy).
Answer
dyd(cos(xy))=−xsin(xy)A