Derivative of exyze^{x y z} with respect to xx

The calculator will find the derivative of exyze^{x y z} with respect to xx, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find ddx(exyz)\frac{d}{dx} \left(e^{x y z}\right).

Solution

The function exyze^{x y z} is the composition f(g(x))f{\left(g{\left(x \right)} \right)} of two functions f(u)=euf{\left(u \right)} = e^{u} and g(x)=xyzg{\left(x \right)} = x y z.

Apply the chain rule ddx(f(g(x)))=ddu(f(u))ddx(g(x))\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right):

(ddx(exyz))=(ddu(eu)ddx(xyz)){\color{red}\left(\frac{d}{dx} \left(e^{x y z}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dx} \left(x y z\right)\right)}

The derivative of the exponential is ddu(eu)=eu\frac{d}{du} \left(e^{u}\right) = e^{u}:

(ddu(eu))ddx(xyz)=(eu)ddx(xyz){\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dx} \left(x y z\right) = {\color{red}\left(e^{u}\right)} \frac{d}{dx} \left(x y z\right)

Return to the old variable:

e(u)ddx(xyz)=e(xyz)ddx(xyz)e^{{\color{red}\left(u\right)}} \frac{d}{dx} \left(x y z\right) = e^{{\color{red}\left(x y z\right)}} \frac{d}{dx} \left(x y z\right)

Apply the constant multiple rule ddx(cf(x))=cddx(f(x))\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right) with c=yzc = y z and f(x)=xf{\left(x \right)} = x:

exyz(ddx(xyz))=exyz(yzddx(x))e^{x y z} {\color{red}\left(\frac{d}{dx} \left(x y z\right)\right)} = e^{x y z} {\color{red}\left(y z \frac{d}{dx} \left(x\right)\right)}

Apply the power rule ddx(xn)=nxn1\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1} with n=1n = 1, in other words, ddx(x)=1\frac{d}{dx} \left(x\right) = 1:

yzexyz(ddx(x))=yzexyz(1)y z e^{x y z} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = y z e^{x y z} {\color{red}\left(1\right)}

Thus, ddx(exyz)=yzexyz\frac{d}{dx} \left(e^{x y z}\right) = y z e^{x y z}.

Answer

ddx(exyz)=yzexyz\frac{d}{dx} \left(e^{x y z}\right) = y z e^{x y z}A