Derivative of exyze^{x y z} with respect to zz

The calculator will find the derivative of exyze^{x y z} with respect to zz, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find ddz(exyz)\frac{d}{dz} \left(e^{x y z}\right).

Solution

The function exyze^{x y z} is the composition f(g(z))f{\left(g{\left(z \right)} \right)} of two functions f(u)=euf{\left(u \right)} = e^{u} and g(z)=xyzg{\left(z \right)} = x y z.

Apply the chain rule ddz(f(g(z)))=ddu(f(u))ddz(g(z))\frac{d}{dz} \left(f{\left(g{\left(z \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dz} \left(g{\left(z \right)}\right):

(ddz(exyz))=(ddu(eu)ddz(xyz)){\color{red}\left(\frac{d}{dz} \left(e^{x y z}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dz} \left(x y z\right)\right)}

The derivative of the exponential is ddu(eu)=eu\frac{d}{du} \left(e^{u}\right) = e^{u}:

(ddu(eu))ddz(xyz)=(eu)ddz(xyz){\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dz} \left(x y z\right) = {\color{red}\left(e^{u}\right)} \frac{d}{dz} \left(x y z\right)

Return to the old variable:

e(u)ddz(xyz)=e(xyz)ddz(xyz)e^{{\color{red}\left(u\right)}} \frac{d}{dz} \left(x y z\right) = e^{{\color{red}\left(x y z\right)}} \frac{d}{dz} \left(x y z\right)

Apply the constant multiple rule ddz(cf(z))=cddz(f(z))\frac{d}{dz} \left(c f{\left(z \right)}\right) = c \frac{d}{dz} \left(f{\left(z \right)}\right) with c=xyc = x y and f(z)=zf{\left(z \right)} = z:

exyz(ddz(xyz))=exyz(xyddz(z))e^{x y z} {\color{red}\left(\frac{d}{dz} \left(x y z\right)\right)} = e^{x y z} {\color{red}\left(x y \frac{d}{dz} \left(z\right)\right)}

Apply the power rule ddz(zn)=nzn1\frac{d}{dz} \left(z^{n}\right) = n z^{n - 1} with n=1n = 1, in other words, ddz(z)=1\frac{d}{dz} \left(z\right) = 1:

xyexyz(ddz(z))=xyexyz(1)x y e^{x y z} {\color{red}\left(\frac{d}{dz} \left(z\right)\right)} = x y e^{x y z} {\color{red}\left(1\right)}

Thus, ddz(exyz)=xyexyz\frac{d}{dz} \left(e^{x y z}\right) = x y e^{x y z}.

Answer

ddz(exyz)=xyexyz\frac{d}{dz} \left(e^{x y z}\right) = x y e^{x y z}A