Derivative of ln(sec(x))\ln\left(\sec{\left(x \right)}\right)

The calculator will find the derivative of ln(sec(x))\ln\left(\sec{\left(x \right)}\right), with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find ddx(ln(sec(x)))\frac{d}{dx} \left(\ln\left(\sec{\left(x \right)}\right)\right).

Solution

The function ln(sec(x))\ln\left(\sec{\left(x \right)}\right) is the composition f(g(x))f{\left(g{\left(x \right)} \right)} of two functions f(u)=ln(u)f{\left(u \right)} = \ln\left(u\right) and g(x)=sec(x)g{\left(x \right)} = \sec{\left(x \right)}.

Apply the chain rule ddx(f(g(x)))=ddu(f(u))ddx(g(x))\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right):

(ddx(ln(sec(x))))=(ddu(ln(u))ddx(sec(x))){\color{red}\left(\frac{d}{dx} \left(\ln\left(\sec{\left(x \right)}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(\sec{\left(x \right)}\right)\right)}

The derivative of the natural logarithm is ddu(ln(u))=1u\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}:

(ddu(ln(u)))ddx(sec(x))=(1u)ddx(sec(x)){\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(\sec{\left(x \right)}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(\sec{\left(x \right)}\right)

Return to the old variable:

ddx(sec(x))(u)=ddx(sec(x))(sec(x))\frac{\frac{d}{dx} \left(\sec{\left(x \right)}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(\sec{\left(x \right)}\right)}{{\color{red}\left(\sec{\left(x \right)}\right)}}

The derivative of the secant is ddx(sec(x))=tan(x)sec(x)\frac{d}{dx} \left(\sec{\left(x \right)}\right) = \tan{\left(x \right)} \sec{\left(x \right)}:

(ddx(sec(x)))sec(x)=(tan(x)sec(x))sec(x)\frac{{\color{red}\left(\frac{d}{dx} \left(\sec{\left(x \right)}\right)\right)}}{\sec{\left(x \right)}} = \frac{{\color{red}\left(\tan{\left(x \right)} \sec{\left(x \right)}\right)}}{\sec{\left(x \right)}}

Thus, ddx(ln(sec(x)))=tan(x)\frac{d}{dx} \left(\ln\left(\sec{\left(x \right)}\right)\right) = \tan{\left(x \right)}.

Answer

ddx(ln(sec(x)))=tan(x)\frac{d}{dx} \left(\ln\left(\sec{\left(x \right)}\right)\right) = \tan{\left(x \right)}A