The calculator will find the derivative of
ln(sec(x)), with steps shown.
Related calculators:
Logarithmic Differentiation Calculator,
Implicit Differentiation Calculator with Steps
Solution
The function ln(sec(x)) is the composition f(g(x)) of two functions f(u)=ln(u) and g(x)=sec(x).
Apply the chain rule dxd(f(g(x)))=dud(f(u))dxd(g(x)):
(dxd(ln(sec(x))))=(dud(ln(u))dxd(sec(x)))The derivative of the natural logarithm is dud(ln(u))=u1:
(dud(ln(u)))dxd(sec(x))=(u1)dxd(sec(x))Return to the old variable:
(u)dxd(sec(x))=(sec(x))dxd(sec(x))The derivative of the secant is dxd(sec(x))=tan(x)sec(x):
sec(x)(dxd(sec(x)))=sec(x)(tan(x)sec(x))Thus, dxd(ln(sec(x)))=tan(x).
Answer
dxd(ln(sec(x)))=tan(x)A