The calculator will find the derivative of
ln2(x), with steps shown.
Related calculators:
Logarithmic Differentiation Calculator,
Implicit Differentiation Calculator with Steps
Solution
The function ln2(x) is the composition f(g(x)) of two functions f(u)=u2 and g(x)=ln(x).
Apply the chain rule dxd(f(g(x)))=dud(f(u))dxd(g(x)):
(dxd(ln2(x)))=(dud(u2)dxd(ln(x)))Apply the power rule dud(un)=nun−1 with n=2:
(dud(u2))dxd(ln(x))=(2u)dxd(ln(x))Return to the old variable:
2(u)dxd(ln(x))=2(ln(x))dxd(ln(x))The derivative of the natural logarithm is dxd(ln(x))=x1:
2ln(x)(dxd(ln(x)))=2ln(x)(x1)Thus, dxd(ln2(x))=x2ln(x).
Answer
dxd(ln2(x))=x2ln(x)A