Derivative of $$$\ln\left(y\right)$$$
Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps
Your Input
Find $$$\frac{d}{dy} \left(\ln\left(y\right)\right)$$$.
Solution
The derivative of the natural logarithm is $$$\frac{d}{dy} \left(\ln\left(y\right)\right) = \frac{1}{y}$$$:
$${\color{red}\left(\frac{d}{dy} \left(\ln\left(y\right)\right)\right)} = {\color{red}\left(\frac{1}{y}\right)}$$Thus, $$$\frac{d}{dy} \left(\ln\left(y\right)\right) = \frac{1}{y}$$$.
Answer
$$$\frac{d}{dy} \left(\ln\left(y\right)\right) = \frac{1}{y}$$$A