Derivative of $$$r \cos{\left(\tanh{\left(\eta \right)} \right)}$$$ with respect to $$$\eta$$$

The calculator will find the derivative of $$$r \cos{\left(\tanh{\left(\eta \right)} \right)}$$$ with respect to $$$\eta$$$, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\frac{d}{d\eta} \left(r \cos{\left(\tanh{\left(\eta \right)} \right)}\right)$$$.

Solution

Apply the constant multiple rule $$$\frac{d}{d\eta} \left(c f{\left(\eta \right)}\right) = c \frac{d}{d\eta} \left(f{\left(\eta \right)}\right)$$$ with $$$c = r$$$ and $$$f{\left(\eta \right)} = \cos{\left(\tanh{\left(\eta \right)} \right)}$$$:

$${\color{red}\left(\frac{d}{d\eta} \left(r \cos{\left(\tanh{\left(\eta \right)} \right)}\right)\right)} = {\color{red}\left(r \frac{d}{d\eta} \left(\cos{\left(\tanh{\left(\eta \right)} \right)}\right)\right)}$$

The function $$$\cos{\left(\tanh{\left(\eta \right)} \right)}$$$ is the composition $$$f{\left(g{\left(\eta \right)} \right)}$$$ of two functions $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ and $$$g{\left(\eta \right)} = \tanh{\left(\eta \right)}$$$.

Apply the chain rule $$$\frac{d}{d\eta} \left(f{\left(g{\left(\eta \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{d\eta} \left(g{\left(\eta \right)}\right)$$$:

$$r {\color{red}\left(\frac{d}{d\eta} \left(\cos{\left(\tanh{\left(\eta \right)} \right)}\right)\right)} = r {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right) \frac{d}{d\eta} \left(\tanh{\left(\eta \right)}\right)\right)}$$

The derivative of the cosine is $$$\frac{d}{du} \left(\cos{\left(u \right)}\right) = - \sin{\left(u \right)}$$$:

$$r {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right)\right)} \frac{d}{d\eta} \left(\tanh{\left(\eta \right)}\right) = r {\color{red}\left(- \sin{\left(u \right)}\right)} \frac{d}{d\eta} \left(\tanh{\left(\eta \right)}\right)$$

Return to the old variable:

$$- r \sin{\left({\color{red}\left(u\right)} \right)} \frac{d}{d\eta} \left(\tanh{\left(\eta \right)}\right) = - r \sin{\left({\color{red}\left(\tanh{\left(\eta \right)}\right)} \right)} \frac{d}{d\eta} \left(\tanh{\left(\eta \right)}\right)$$

The derivative of the hyperbolic tangent is $$$\frac{d}{d\eta} \left(\tanh{\left(\eta \right)}\right) = \operatorname{sech}^{2}{\left(\eta \right)}$$$:

$$- r \sin{\left(\tanh{\left(\eta \right)} \right)} {\color{red}\left(\frac{d}{d\eta} \left(\tanh{\left(\eta \right)}\right)\right)} = - r \sin{\left(\tanh{\left(\eta \right)} \right)} {\color{red}\left(\operatorname{sech}^{2}{\left(\eta \right)}\right)}$$

Thus, $$$\frac{d}{d\eta} \left(r \cos{\left(\tanh{\left(\eta \right)} \right)}\right) = - r \sin{\left(\tanh{\left(\eta \right)} \right)} \operatorname{sech}^{2}{\left(\eta \right)}.$$$

Answer

$$$\frac{d}{d\eta} \left(r \cos{\left(\tanh{\left(\eta \right)} \right)}\right) = - r \sin{\left(\tanh{\left(\eta \right)} \right)} \operatorname{sech}^{2}{\left(\eta \right)}$$$A