Derivative of sin(xy)\sin{\left(x y \right)} with respect to xx

The calculator will find the derivative of sin(xy)\sin{\left(x y \right)} with respect to xx, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find ddx(sin(xy))\frac{d}{dx} \left(\sin{\left(x y \right)}\right).

Solution

The function sin(xy)\sin{\left(x y \right)} is the composition f(g(x))f{\left(g{\left(x \right)} \right)} of two functions f(u)=sin(u)f{\left(u \right)} = \sin{\left(u \right)} and g(x)=xyg{\left(x \right)} = x y.

Apply the chain rule ddx(f(g(x)))=ddu(f(u))ddx(g(x))\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right):

(ddx(sin(xy)))=(ddu(sin(u))ddx(xy)){\color{red}\left(\frac{d}{dx} \left(\sin{\left(x y \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dx} \left(x y\right)\right)}

The derivative of the sine is ddu(sin(u))=cos(u)\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}:

(ddu(sin(u)))ddx(xy)=(cos(u))ddx(xy){\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dx} \left(x y\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dx} \left(x y\right)

Return to the old variable:

cos((u))ddx(xy)=cos((xy))ddx(xy)\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(x y\right) = \cos{\left({\color{red}\left(x y\right)} \right)} \frac{d}{dx} \left(x y\right)

Apply the constant multiple rule ddx(cf(x))=cddx(f(x))\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right) with c=yc = y and f(x)=xf{\left(x \right)} = x:

cos(xy)(ddx(xy))=cos(xy)(yddx(x))\cos{\left(x y \right)} {\color{red}\left(\frac{d}{dx} \left(x y\right)\right)} = \cos{\left(x y \right)} {\color{red}\left(y \frac{d}{dx} \left(x\right)\right)}

Apply the power rule ddx(xn)=nxn1\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1} with n=1n = 1, in other words, ddx(x)=1\frac{d}{dx} \left(x\right) = 1:

ycos(xy)(ddx(x))=ycos(xy)(1)y \cos{\left(x y \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = y \cos{\left(x y \right)} {\color{red}\left(1\right)}

Thus, ddx(sin(xy))=ycos(xy)\frac{d}{dx} \left(\sin{\left(x y \right)}\right) = y \cos{\left(x y \right)}.

Answer

ddx(sin(xy))=ycos(xy)\frac{d}{dx} \left(\sin{\left(x y \right)}\right) = y \cos{\left(x y \right)}A