Derivative of sin(xy)\sin{\left(x y \right)} with respect to yy

The calculator will find the derivative of sin(xy)\sin{\left(x y \right)} with respect to yy, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find ddy(sin(xy))\frac{d}{dy} \left(\sin{\left(x y \right)}\right).

Solution

The function sin(xy)\sin{\left(x y \right)} is the composition f(g(y))f{\left(g{\left(y \right)} \right)} of two functions f(u)=sin(u)f{\left(u \right)} = \sin{\left(u \right)} and g(y)=xyg{\left(y \right)} = x y.

Apply the chain rule ddy(f(g(y)))=ddu(f(u))ddy(g(y))\frac{d}{dy} \left(f{\left(g{\left(y \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dy} \left(g{\left(y \right)}\right):

(ddy(sin(xy)))=(ddu(sin(u))ddy(xy)){\color{red}\left(\frac{d}{dy} \left(\sin{\left(x y \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right) \frac{d}{dy} \left(x y\right)\right)}

The derivative of the sine is ddu(sin(u))=cos(u)\frac{d}{du} \left(\sin{\left(u \right)}\right) = \cos{\left(u \right)}:

(ddu(sin(u)))ddy(xy)=(cos(u))ddy(xy){\color{red}\left(\frac{d}{du} \left(\sin{\left(u \right)}\right)\right)} \frac{d}{dy} \left(x y\right) = {\color{red}\left(\cos{\left(u \right)}\right)} \frac{d}{dy} \left(x y\right)

Return to the old variable:

cos((u))ddy(xy)=cos((xy))ddy(xy)\cos{\left({\color{red}\left(u\right)} \right)} \frac{d}{dy} \left(x y\right) = \cos{\left({\color{red}\left(x y\right)} \right)} \frac{d}{dy} \left(x y\right)

Apply the constant multiple rule ddy(cf(y))=cddy(f(y))\frac{d}{dy} \left(c f{\left(y \right)}\right) = c \frac{d}{dy} \left(f{\left(y \right)}\right) with c=xc = x and f(y)=yf{\left(y \right)} = y:

cos(xy)(ddy(xy))=cos(xy)(xddy(y))\cos{\left(x y \right)} {\color{red}\left(\frac{d}{dy} \left(x y\right)\right)} = \cos{\left(x y \right)} {\color{red}\left(x \frac{d}{dy} \left(y\right)\right)}

Apply the power rule ddy(yn)=nyn1\frac{d}{dy} \left(y^{n}\right) = n y^{n - 1} with n=1n = 1, in other words, ddy(y)=1\frac{d}{dy} \left(y\right) = 1:

xcos(xy)(ddy(y))=xcos(xy)(1)x \cos{\left(x y \right)} {\color{red}\left(\frac{d}{dy} \left(y\right)\right)} = x \cos{\left(x y \right)} {\color{red}\left(1\right)}

Thus, ddy(sin(xy))=xcos(xy)\frac{d}{dy} \left(\sin{\left(x y \right)}\right) = x \cos{\left(x y \right)}.

Answer

ddy(sin(xy))=xcos(xy)\frac{d}{dy} \left(\sin{\left(x y \right)}\right) = x \cos{\left(x y \right)}A