Derivative of 3sinh(v)2\frac{\sqrt{3} \sinh{\left(v \right)}}{2}

The calculator will find the derivative of 3sinh(v)2\frac{\sqrt{3} \sinh{\left(v \right)}}{2}, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find ddv(3sinh(v)2)\frac{d}{dv} \left(\frac{\sqrt{3} \sinh{\left(v \right)}}{2}\right).

Solution

Apply the constant multiple rule ddv(cf(v))=cddv(f(v))\frac{d}{dv} \left(c f{\left(v \right)}\right) = c \frac{d}{dv} \left(f{\left(v \right)}\right) with c=32c = \frac{\sqrt{3}}{2} and f(v)=sinh(v)f{\left(v \right)} = \sinh{\left(v \right)}:

(ddv(3sinh(v)2))=(32ddv(sinh(v))){\color{red}\left(\frac{d}{dv} \left(\frac{\sqrt{3} \sinh{\left(v \right)}}{2}\right)\right)} = {\color{red}\left(\frac{\sqrt{3}}{2} \frac{d}{dv} \left(\sinh{\left(v \right)}\right)\right)}

The derivative of the hyperbolic sine is ddv(sinh(v))=cosh(v)\frac{d}{dv} \left(\sinh{\left(v \right)}\right) = \cosh{\left(v \right)}:

3(ddv(sinh(v)))2=3(cosh(v))2\frac{\sqrt{3} {\color{red}\left(\frac{d}{dv} \left(\sinh{\left(v \right)}\right)\right)}}{2} = \frac{\sqrt{3} {\color{red}\left(\cosh{\left(v \right)}\right)}}{2}

Thus, ddv(3sinh(v)2)=3cosh(v)2\frac{d}{dv} \left(\frac{\sqrt{3} \sinh{\left(v \right)}}{2}\right) = \frac{\sqrt{3} \cosh{\left(v \right)}}{2}.

Answer

ddv(3sinh(v)2)=3cosh(v)2\frac{d}{dv} \left(\frac{\sqrt{3} \sinh{\left(v \right)}}{2}\right) = \frac{\sqrt{3} \cosh{\left(v \right)}}{2}A