The calculator will find the derivative of
tan(2x), with steps shown.
Related calculators:
Logarithmic Differentiation Calculator,
Implicit Differentiation Calculator with Steps
Solution
The function tan(2x) is the composition f(g(x)) of two functions f(u)=tan(u) and g(x)=2x.
Apply the chain rule dxd(f(g(x)))=dud(f(u))dxd(g(x)):
(dxd(tan(2x)))=(dud(tan(u))dxd(2x))The derivative of the tangent is dud(tan(u))=sec2(u):
(dud(tan(u)))dxd(2x)=(sec2(u))dxd(2x)Return to the old variable:
sec2((u))dxd(2x)=sec2((2x))dxd(2x)Apply the constant multiple rule dxd(cf(x))=cdxd(f(x)) with c=21 and f(x)=x:
sec2(2x)(dxd(2x))=sec2(2x)(2dxd(x))Apply the power rule dxd(xn)=nxn−1 with n=1, in other words, dxd(x)=1:
2sec2(2x)(dxd(x))=2sec2(2x)(1)Simplify:
2sec2(2x)=cos(x)+11Thus, dxd(tan(2x))=cos(x)+11.
Answer
dxd(tan(2x))=cos(x)+11A