Second derivative of sinh(x)\sinh{\left(x \right)}

The calculator will find the second derivative of sinh(x)\sinh{\left(x \right)}, with steps shown.

Related calculators: Derivative Calculator, Logarithmic Differentiation Calculator

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find d2dx2(sinh(x))\frac{d^{2}}{dx^{2}} \left(\sinh{\left(x \right)}\right).

Solution

Find the first derivative ddx(sinh(x))\frac{d}{dx} \left(\sinh{\left(x \right)}\right)

The derivative of the hyperbolic sine is ddx(sinh(x))=cosh(x)\frac{d}{dx} \left(\sinh{\left(x \right)}\right) = \cosh{\left(x \right)}:

(ddx(sinh(x)))=(cosh(x)){\color{red}\left(\frac{d}{dx} \left(\sinh{\left(x \right)}\right)\right)} = {\color{red}\left(\cosh{\left(x \right)}\right)}

Thus, ddx(sinh(x))=cosh(x)\frac{d}{dx} \left(\sinh{\left(x \right)}\right) = \cosh{\left(x \right)}.

Next, d2dx2(sinh(x))=ddx(cosh(x))\frac{d^{2}}{dx^{2}} \left(\sinh{\left(x \right)}\right) = \frac{d}{dx} \left(\cosh{\left(x \right)}\right)

The derivative of the hyperbolic cosine is ddx(cosh(x))=sinh(x)\frac{d}{dx} \left(\cosh{\left(x \right)}\right) = \sinh{\left(x \right)}:

(ddx(cosh(x)))=(sinh(x)){\color{red}\left(\frac{d}{dx} \left(\cosh{\left(x \right)}\right)\right)} = {\color{red}\left(\sinh{\left(x \right)}\right)}

Thus, ddx(cosh(x))=sinh(x)\frac{d}{dx} \left(\cosh{\left(x \right)}\right) = \sinh{\left(x \right)}.

Therefore, d2dx2(sinh(x))=sinh(x)\frac{d^{2}}{dx^{2}} \left(\sinh{\left(x \right)}\right) = \sinh{\left(x \right)}.

Answer

d2dx2(sinh(x))=sinh(x)\frac{d^{2}}{dx^{2}} \left(\sinh{\left(x \right)}\right) = \sinh{\left(x \right)}A