Solution
For the integral ∫csc3(x)dx, use integration by parts ∫udv=uv−∫vdu.
Let u=csc(x) and dv=csc2(x)dx.
Then du=(csc(x))′dx=−cot(x)csc(x)dx (steps can be seen ») and v=∫csc2(x)dx=−cot(x) (steps can be seen »).
The integral becomes
∫csc3(x)dx=csc(x)⋅(−cot(x))−∫(−cot(x))⋅(−cot(x)csc(x))dx=−cot(x)csc(x)−∫cot2(x)csc(x)dx
Apply the formula cot2(x)=csc2(x)−1:
−cot(x)csc(x)−∫cot2(x)csc(x)dx=−cot(x)csc(x)−∫(csc2(x)−1)csc(x)dx
Expand:
−cot(x)csc(x)−∫(csc2(x)−1)csc(x)dx=−cot(x)csc(x)−∫(csc3(x)−csc(x))dx
The integral of a difference is the difference of integrals:
−cot(x)csc(x)−∫(csc3(x)−csc(x))dx=−cot(x)csc(x)+∫csc(x)dx−∫csc3(x)dx
Thus, we get the following simple linear equation with respect to the integral:
∫csc3(x)dx=−cot(x)csc(x)+∫csc(x)dx−∫csc3(x)dx
Solving it, we obtain that
∫csc3(x)dx=−2cot(x)csc(x)+2∫csc(x)dx
Rewrite the cosecant as csc(x)=sin(x)1:
−2cot(x)csc(x)+2∫csc(x)dx=−2cot(x)csc(x)+2∫sin(x)1dx
Rewrite the sine using the double angle formula sin(x)=2sin(2x)cos(2x):
−2cot(x)csc(x)+2∫sin(x)1dx=−2cot(x)csc(x)+2∫2sin(2x)cos(2x)1dx
Multiply the numerator and denominator by sec2(2x):
−2cot(x)csc(x)+2∫2sin(2x)cos(2x)1dx=−2cot(x)csc(x)+2∫2tan(2x)sec2(2x)dx
Let u=tan(2x).
Then du=(tan(2x))′dx=2sec2(2x)dx (steps can be seen »), and we have that sec2(2x)dx=2du.
Therefore,
−2cot(x)csc(x)+2∫2tan(2x)sec2(2x)dx=−2cot(x)csc(x)+2∫u1du
The integral of u1 is ∫u1du=ln(∣u∣):
−2cot(x)csc(x)+2∫u1du=−2cot(x)csc(x)+2ln(∣u∣)
Recall that u=tan(2x):
2ln(∣u∣)−2cot(x)csc(x)=2ln(∣∣tan(2x)∣∣)−2cot(x)csc(x)
Therefore,
∫csc3(x)dx=2ln(∣∣tan(2x)∣∣)−2cot(x)csc(x)
Add the constant of integration:
∫csc3(x)dx=2ln(∣∣tan(2x)∣∣)−2cot(x)csc(x)+C