Integral of csc3(x)\csc^{3}{\left(x \right)}

The calculator will find the integral/antiderivative of csc3(x)\csc^{3}{\left(x \right)}, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as dxdx, dydy etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find csc3(x)dx\int \csc^{3}{\left(x \right)}\, dx.

Solution

For the integral csc3(x)dx\int{\csc^{3}{\left(x \right)} d x}, use integration by parts udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}.

Let u=csc(x)\operatorname{u}=\csc{\left(x \right)} and dv=csc2(x)dx\operatorname{dv}=\csc^{2}{\left(x \right)} dx.

Then du=(csc(x))dx=cot(x)csc(x)dx\operatorname{du}=\left(\csc{\left(x \right)}\right)^{\prime }dx=- \cot{\left(x \right)} \csc{\left(x \right)} dx (steps can be seen ») and v=csc2(x)dx=cot(x)\operatorname{v}=\int{\csc^{2}{\left(x \right)} d x}=- \cot{\left(x \right)} (steps can be seen »).

The integral becomes

csc3(x)dx=csc(x)(cot(x))(cot(x))(cot(x)csc(x))dx=cot(x)csc(x)cot2(x)csc(x)dx\int{\csc^{3}{\left(x \right)} d x}=\csc{\left(x \right)} \cdot \left(- \cot{\left(x \right)}\right)-\int{\left(- \cot{\left(x \right)}\right) \cdot \left(- \cot{\left(x \right)} \csc{\left(x \right)}\right) d x}=- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\cot^{2}{\left(x \right)} \csc{\left(x \right)} d x}

Apply the formula cot2(x)=csc2(x)1\cot^{2}{\left(x \right)} = \csc^{2}{\left(x \right)} - 1:

cot(x)csc(x)cot2(x)csc(x)dx=cot(x)csc(x)(csc2(x)1)csc(x)dx- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\cot^{2}{\left(x \right)} \csc{\left(x \right)} d x}=- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\left(\csc^{2}{\left(x \right)} - 1\right) \csc{\left(x \right)} d x}

Expand:

cot(x)csc(x)(csc2(x)1)csc(x)dx=cot(x)csc(x)(csc3(x)csc(x))dx- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\left(\csc^{2}{\left(x \right)} - 1\right) \csc{\left(x \right)} d x}=- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\left(\csc^{3}{\left(x \right)} - \csc{\left(x \right)}\right)d x}

The integral of a difference is the difference of integrals:

cot(x)csc(x)(csc3(x)csc(x))dx=cot(x)csc(x)+csc(x)dxcsc3(x)dx- \cot{\left(x \right)} \csc{\left(x \right)} - \int{\left(\csc^{3}{\left(x \right)} - \csc{\left(x \right)}\right)d x}=- \cot{\left(x \right)} \csc{\left(x \right)} + \int{\csc{\left(x \right)} d x} - \int{\csc^{3}{\left(x \right)} d x}

Thus, we get the following simple linear equation with respect to the integral:

csc3(x)dx=cot(x)csc(x)+csc(x)dxcsc3(x)dx{\color{red}{\int{\csc^{3}{\left(x \right)} d x}}}=- \cot{\left(x \right)} \csc{\left(x \right)} + \int{\csc{\left(x \right)} d x} - {\color{red}{\int{\csc^{3}{\left(x \right)} d x}}}

Solving it, we obtain that

csc3(x)dx=cot(x)csc(x)2+csc(x)dx2\int{\csc^{3}{\left(x \right)} d x}=- \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{\int{\csc{\left(x \right)} d x}}{2}

Rewrite the cosecant as csc(x)=1sin(x)\csc\left(x\right)=\frac{1}{\sin\left(x\right)}:

cot(x)csc(x)2+csc(x)dx2=cot(x)csc(x)2+1sin(x)dx2- \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{{\color{red}{\int{\csc{\left(x \right)} d x}}}}{2} = - \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{\sin{\left(x \right)}} d x}}}}{2}

Rewrite the sine using the double angle formula sin(x)=2sin(x2)cos(x2)\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right):

cot(x)csc(x)2+1sin(x)dx2=cot(x)csc(x)2+12sin(x2)cos(x2)dx2- \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{\sin{\left(x \right)}} d x}}}}{2} = - \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}}}{2}

Multiply the numerator and denominator by sec2(x2)\sec^2\left(\frac{x}{2} \right):

cot(x)csc(x)2+12sin(x2)cos(x2)dx2=cot(x)csc(x)2+sec2(x2)2tan(x2)dx2- \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{x}{2} \right)}} d x}}}}{2} = - \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}}}{2}

Let u=tan(x2)u=\tan{\left(\frac{x}{2} \right)}.

Then du=(tan(x2))dx=sec2(x2)2dxdu=\left(\tan{\left(\frac{x}{2} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2} dx (steps can be seen »), and we have that sec2(x2)dx=2du\sec^{2}{\left(\frac{x}{2} \right)} dx = 2 du.

Therefore,

cot(x)csc(x)2+sec2(x2)2tan(x2)dx2=cot(x)csc(x)2+1udu2- \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2 \tan{\left(\frac{x}{2} \right)}} d x}}}}{2} = - \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}

The integral of 1u\frac{1}{u} is 1udu=ln(u)\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}:

cot(x)csc(x)2+1udu2=cot(x)csc(x)2+ln(u)2- \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = - \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}

Recall that u=tan(x2)u=\tan{\left(\frac{x}{2} \right)}:

ln(u)2cot(x)csc(x)2=ln(tan(x2))2cot(x)csc(x)2\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2} = \frac{\ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} \right)}}}}\right| \right)}}{2} - \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2}

Therefore,

csc3(x)dx=ln(tan(x2))2cot(x)csc(x)2\int{\csc^{3}{\left(x \right)} d x} = \frac{\ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)}}{2} - \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2}

Add the constant of integration:

csc3(x)dx=ln(tan(x2))2cot(x)csc(x)2+C\int{\csc^{3}{\left(x \right)} d x} = \frac{\ln{\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right| \right)}}{2} - \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2}+C

Answer

csc3(x)dx=(ln(tan(x2))2cot(x)csc(x)2)+C\int \csc^{3}{\left(x \right)}\, dx = \left(\frac{\ln\left(\left|{\tan{\left(\frac{x}{2} \right)}}\right|\right)}{2} - \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{2}\right) + CA