Solution
Rewrite the sine using the power reducing formula sin6(α)=−3215cos(2α)+163cos(4α)−32cos(6α)+165 with α=x:
∫sin6(x)dx=∫(−3215cos(2x)+163cos(4x)−32cos(6x)+165)dx
Apply the constant multiple rule ∫cf(x)dx=c∫f(x)dx with c=321 and f(x)=−15cos(2x)+6cos(4x)−cos(6x)+10:
∫(−3215cos(2x)+163cos(4x)−32cos(6x)+165)dx=(32∫(−15cos(2x)+6cos(4x)−cos(6x)+10)dx)
Integrate term by term:
32∫(−15cos(2x)+6cos(4x)−cos(6x)+10)dx=32(∫10dx−∫15cos(2x)dx+∫6cos(4x)dx−∫cos(6x)dx)
Apply the constant rule ∫cdx=cx with c=10:
−32∫15cos(2x)dx+32∫6cos(4x)dx−32∫cos(6x)dx+32∫10dx=−32∫15cos(2x)dx+32∫6cos(4x)dx−32∫cos(6x)dx+32(10x)
Let u=6x.
Then du=(6x)′dx=6dx (steps can be seen »), and we have that dx=6du.
The integral can be rewritten as
165x−32∫15cos(2x)dx+32∫6cos(4x)dx−32∫cos(6x)dx=165x−32∫15cos(2x)dx+32∫6cos(4x)dx−32∫6cos(u)du
Apply the constant multiple rule ∫cf(u)du=c∫f(u)du with c=61 and f(u)=cos(u):
165x−32∫15cos(2x)dx+32∫6cos(4x)dx−32∫6cos(u)du=165x−32∫15cos(2x)dx+32∫6cos(4x)dx−32(6∫cos(u)du)
The integral of the cosine is ∫cos(u)du=sin(u):
165x−32∫15cos(2x)dx+32∫6cos(4x)dx−192∫cos(u)du=165x−32∫15cos(2x)dx+32∫6cos(4x)dx−192sin(u)
Recall that u=6x:
165x−32∫15cos(2x)dx+32∫6cos(4x)dx−192sin(u)=165x−32∫15cos(2x)dx+32∫6cos(4x)dx−192sin((6x))
Apply the constant multiple rule ∫cf(x)dx=c∫f(x)dx with c=15 and f(x)=cos(2x):
165x−192sin(6x)+32∫6cos(4x)dx−32∫15cos(2x)dx=165x−192sin(6x)+32∫6cos(4x)dx−32(15∫cos(2x)dx)
Let u=2x.
Then du=(2x)′dx=2dx (steps can be seen »), and we have that dx=2du.
Therefore,
165x−192sin(6x)+32∫6cos(4x)dx−3215∫cos(2x)dx=165x−192sin(6x)+32∫6cos(4x)dx−3215∫2cos(u)du
Apply the constant multiple rule ∫cf(u)du=c∫f(u)du with c=21 and f(u)=cos(u):
165x−192sin(6x)+32∫6cos(4x)dx−3215∫2cos(u)du=165x−192sin(6x)+32∫6cos(4x)dx−3215(2∫cos(u)du)
The integral of the cosine is ∫cos(u)du=sin(u):
165x−192sin(6x)+32∫6cos(4x)dx−6415∫cos(u)du=165x−192sin(6x)+32∫6cos(4x)dx−6415sin(u)
Recall that u=2x:
165x−192sin(6x)+32∫6cos(4x)dx−6415sin(u)=165x−192sin(6x)+32∫6cos(4x)dx−6415sin((2x))
Apply the constant multiple rule ∫cf(x)dx=c∫f(x)dx with c=6 and f(x)=cos(4x):
165x−6415sin(2x)−192sin(6x)+32∫6cos(4x)dx=165x−6415sin(2x)−192sin(6x)+32(6∫cos(4x)dx)
Let u=4x.
Then du=(4x)′dx=4dx (steps can be seen »), and we have that dx=4du.
Thus,
165x−6415sin(2x)−192sin(6x)+163∫cos(4x)dx=165x−6415sin(2x)−192sin(6x)+163∫4cos(u)du
Apply the constant multiple rule ∫cf(u)du=c∫f(u)du with c=41 and f(u)=cos(u):
165x−6415sin(2x)−192sin(6x)+163∫4cos(u)du=165x−6415sin(2x)−192sin(6x)+163(4∫cos(u)du)
The integral of the cosine is ∫cos(u)du=sin(u):
165x−6415sin(2x)−192sin(6x)+643∫cos(u)du=165x−6415sin(2x)−192sin(6x)+643sin(u)
Recall that u=4x:
165x−6415sin(2x)−192sin(6x)+643sin(u)=165x−6415sin(2x)−192sin(6x)+643sin((4x))
Therefore,
∫sin6(x)dx=165x−6415sin(2x)+643sin(4x)−192sin(6x)
Simplify:
∫sin6(x)dx=19260x−45sin(2x)+9sin(4x)−sin(6x)
Add the constant of integration:
∫sin6(x)dx=19260x−45sin(2x)+9sin(4x)−sin(6x)+C