Integral of sin6(x)\sin^{6}{\left(x \right)}

The calculator will find the integral/antiderivative of sin6(x)\sin^{6}{\left(x \right)}, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as dxdx, dydy etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find sin6(x)dx\int \sin^{6}{\left(x \right)}\, dx.

Solution

Rewrite the sine using the power reducing formula sin6(α)=15cos(2α)32+3cos(4α)16cos(6α)32+516\sin^{6}{\left(\alpha \right)} = - \frac{15 \cos{\left(2 \alpha \right)}}{32} + \frac{3 \cos{\left(4 \alpha \right)}}{16} - \frac{\cos{\left(6 \alpha \right)}}{32} + \frac{5}{16} with α=x\alpha=x:

sin6(x)dx=(15cos(2x)32+3cos(4x)16cos(6x)32+516)dx{\color{red}{\int{\sin^{6}{\left(x \right)} d x}}} = {\color{red}{\int{\left(- \frac{15 \cos{\left(2 x \right)}}{32} + \frac{3 \cos{\left(4 x \right)}}{16} - \frac{\cos{\left(6 x \right)}}{32} + \frac{5}{16}\right)d x}}}

Apply the constant multiple rule cf(x)dx=cf(x)dx\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx with c=132c=\frac{1}{32} and f(x)=15cos(2x)+6cos(4x)cos(6x)+10f{\left(x \right)} = - 15 \cos{\left(2 x \right)} + 6 \cos{\left(4 x \right)} - \cos{\left(6 x \right)} + 10:

(15cos(2x)32+3cos(4x)16cos(6x)32+516)dx=((15cos(2x)+6cos(4x)cos(6x)+10)dx32){\color{red}{\int{\left(- \frac{15 \cos{\left(2 x \right)}}{32} + \frac{3 \cos{\left(4 x \right)}}{16} - \frac{\cos{\left(6 x \right)}}{32} + \frac{5}{16}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(- 15 \cos{\left(2 x \right)} + 6 \cos{\left(4 x \right)} - \cos{\left(6 x \right)} + 10\right)d x}}{32}\right)}}

Integrate term by term:

(15cos(2x)+6cos(4x)cos(6x)+10)dx32=(10dx15cos(2x)dx+6cos(4x)dxcos(6x)dx)32\frac{{\color{red}{\int{\left(- 15 \cos{\left(2 x \right)} + 6 \cos{\left(4 x \right)} - \cos{\left(6 x \right)} + 10\right)d x}}}}{32} = \frac{{\color{red}{\left(\int{10 d x} - \int{15 \cos{\left(2 x \right)} d x} + \int{6 \cos{\left(4 x \right)} d x} - \int{\cos{\left(6 x \right)} d x}\right)}}}{32}

Apply the constant rule cdx=cx\int c\, dx = c x with c=10c=10:

15cos(2x)dx32+6cos(4x)dx32cos(6x)dx32+10dx32=15cos(2x)dx32+6cos(4x)dx32cos(6x)dx32+(10x)32- \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{\int{\cos{\left(6 x \right)} d x}}{32} + \frac{{\color{red}{\int{10 d x}}}}{32} = - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{\int{\cos{\left(6 x \right)} d x}}{32} + \frac{{\color{red}{\left(10 x\right)}}}{32}

Let u=6xu=6 x.

Then du=(6x)dx=6dxdu=\left(6 x\right)^{\prime }dx = 6 dx (steps can be seen »), and we have that dx=du6dx = \frac{du}{6}.

The integral can be rewritten as

5x1615cos(2x)dx32+6cos(4x)dx32cos(6x)dx32=5x1615cos(2x)dx32+6cos(4x)dx32cos(u)6du32\frac{5 x}{16} - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{{\color{red}{\int{\cos{\left(6 x \right)} d x}}}}{32} = \frac{5 x}{16} - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{6} d u}}}}{32}

Apply the constant multiple rule cf(u)du=cf(u)du\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du with c=16c=\frac{1}{6} and f(u)=cos(u)f{\left(u \right)} = \cos{\left(u \right)}:

5x1615cos(2x)dx32+6cos(4x)dx32cos(u)6du32=5x1615cos(2x)dx32+6cos(4x)dx32(cos(u)du6)32\frac{5 x}{16} - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{6} d u}}}}{32} = \frac{5 x}{16} - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{6}\right)}}}{32}

The integral of the cosine is cos(u)du=sin(u)\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}:

5x1615cos(2x)dx32+6cos(4x)dx32cos(u)du192=5x1615cos(2x)dx32+6cos(4x)dx32sin(u)192\frac{5 x}{16} - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{192} = \frac{5 x}{16} - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{{\color{red}{\sin{\left(u \right)}}}}{192}

Recall that u=6xu=6 x:

5x1615cos(2x)dx32+6cos(4x)dx32sin(u)192=5x1615cos(2x)dx32+6cos(4x)dx32sin((6x))192\frac{5 x}{16} - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{\sin{\left({\color{red}{u}} \right)}}{192} = \frac{5 x}{16} - \frac{\int{15 \cos{\left(2 x \right)} d x}}{32} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{\sin{\left({\color{red}{\left(6 x\right)}} \right)}}{192}

Apply the constant multiple rule cf(x)dx=cf(x)dx\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx with c=15c=15 and f(x)=cos(2x)f{\left(x \right)} = \cos{\left(2 x \right)}:

5x16sin(6x)192+6cos(4x)dx3215cos(2x)dx32=5x16sin(6x)192+6cos(4x)dx32(15cos(2x)dx)32\frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{{\color{red}{\int{15 \cos{\left(2 x \right)} d x}}}}{32} = \frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{{\color{red}{\left(15 \int{\cos{\left(2 x \right)} d x}\right)}}}{32}

Let u=2xu=2 x.

Then du=(2x)dx=2dxdu=\left(2 x\right)^{\prime }dx = 2 dx (steps can be seen »), and we have that dx=du2dx = \frac{du}{2}.

Therefore,

5x16sin(6x)192+6cos(4x)dx3215cos(2x)dx32=5x16sin(6x)192+6cos(4x)dx3215cos(u)2du32\frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{15 {\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{32} = \frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{15 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{32}

Apply the constant multiple rule cf(u)du=cf(u)du\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du with c=12c=\frac{1}{2} and f(u)=cos(u)f{\left(u \right)} = \cos{\left(u \right)}:

5x16sin(6x)192+6cos(4x)dx3215cos(u)2du32=5x16sin(6x)192+6cos(4x)dx3215(cos(u)du2)32\frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{15 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{32} = \frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{15 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{32}

The integral of the cosine is cos(u)du=sin(u)\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}:

5x16sin(6x)192+6cos(4x)dx3215cos(u)du64=5x16sin(6x)192+6cos(4x)dx3215sin(u)64\frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{15 {\color{red}{\int{\cos{\left(u \right)} d u}}}}{64} = \frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{15 {\color{red}{\sin{\left(u \right)}}}}{64}

Recall that u=2xu=2 x:

5x16sin(6x)192+6cos(4x)dx3215sin(u)64=5x16sin(6x)192+6cos(4x)dx3215sin((2x))64\frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{15 \sin{\left({\color{red}{u}} \right)}}{64} = \frac{5 x}{16} - \frac{\sin{\left(6 x \right)}}{192} + \frac{\int{6 \cos{\left(4 x \right)} d x}}{32} - \frac{15 \sin{\left({\color{red}{\left(2 x\right)}} \right)}}{64}

Apply the constant multiple rule cf(x)dx=cf(x)dx\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx with c=6c=6 and f(x)=cos(4x)f{\left(x \right)} = \cos{\left(4 x \right)}:

5x1615sin(2x)64sin(6x)192+6cos(4x)dx32=5x1615sin(2x)64sin(6x)192+(6cos(4x)dx)32\frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{{\color{red}{\int{6 \cos{\left(4 x \right)} d x}}}}{32} = \frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{{\color{red}{\left(6 \int{\cos{\left(4 x \right)} d x}\right)}}}{32}

Let u=4xu=4 x.

Then du=(4x)dx=4dxdu=\left(4 x\right)^{\prime }dx = 4 dx (steps can be seen »), and we have that dx=du4dx = \frac{du}{4}.

Thus,

5x1615sin(2x)64sin(6x)192+3cos(4x)dx16=5x1615sin(2x)64sin(6x)192+3cos(u)4du16\frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{3 {\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{16} = \frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{3 {\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{16}

Apply the constant multiple rule cf(u)du=cf(u)du\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du with c=14c=\frac{1}{4} and f(u)=cos(u)f{\left(u \right)} = \cos{\left(u \right)}:

5x1615sin(2x)64sin(6x)192+3cos(u)4du16=5x1615sin(2x)64sin(6x)192+3(cos(u)du4)16\frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{3 {\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{16} = \frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{3 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{16}

The integral of the cosine is cos(u)du=sin(u)\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}:

5x1615sin(2x)64sin(6x)192+3cos(u)du64=5x1615sin(2x)64sin(6x)192+3sin(u)64\frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{3 {\color{red}{\int{\cos{\left(u \right)} d u}}}}{64} = \frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{3 {\color{red}{\sin{\left(u \right)}}}}{64}

Recall that u=4xu=4 x:

5x1615sin(2x)64sin(6x)192+3sin(u)64=5x1615sin(2x)64sin(6x)192+3sin((4x))64\frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{3 \sin{\left({\color{red}{u}} \right)}}{64} = \frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192} + \frac{3 \sin{\left({\color{red}{\left(4 x\right)}} \right)}}{64}

Therefore,

sin6(x)dx=5x1615sin(2x)64+3sin(4x)64sin(6x)192\int{\sin^{6}{\left(x \right)} d x} = \frac{5 x}{16} - \frac{15 \sin{\left(2 x \right)}}{64} + \frac{3 \sin{\left(4 x \right)}}{64} - \frac{\sin{\left(6 x \right)}}{192}

Simplify:

sin6(x)dx=60x45sin(2x)+9sin(4x)sin(6x)192\int{\sin^{6}{\left(x \right)} d x} = \frac{60 x - 45 \sin{\left(2 x \right)} + 9 \sin{\left(4 x \right)} - \sin{\left(6 x \right)}}{192}

Add the constant of integration:

sin6(x)dx=60x45sin(2x)+9sin(4x)sin(6x)192+C\int{\sin^{6}{\left(x \right)} d x} = \frac{60 x - 45 \sin{\left(2 x \right)} + 9 \sin{\left(4 x \right)} - \sin{\left(6 x \right)}}{192}+C

Answer

sin6(x)dx=60x45sin(2x)+9sin(4x)sin(6x)192+C\int \sin^{6}{\left(x \right)}\, dx = \frac{60 x - 45 \sin{\left(2 x \right)} + 9 \sin{\left(4 x \right)} - \sin{\left(6 x \right)}}{192} + CA