Solution
Apply the constant multiple rule ∫cf(θ)dθ=c∫f(θ)dθ with c=−1 and f(θ)=sin3(θ):
∫(−sin3(θ))dθ=(−∫sin3(θ)dθ)
Strip out one sine and write everything else in terms of the cosine, using the formula sin2(α)=−cos2(α)+1 with α=θ:
−∫sin3(θ)dθ=−∫(1−cos2(θ))sin(θ)dθ
Let u=cos(θ).
Then du=(cos(θ))′dθ=−sin(θ)dθ (steps can be seen »), and we have that sin(θ)dθ=−du.
The integral becomes
−∫(1−cos2(θ))sin(θ)dθ=−∫(u2−1)du
Apply the constant multiple rule ∫cf(u)du=c∫f(u)du with c=−1 and f(u)=1−u2:
−∫(u2−1)du=−(−∫(1−u2)du)
Integrate term by term:
∫(1−u2)du=(∫1du−∫u2du)
Apply the constant rule ∫cdu=cu with c=1:
−∫u2du+∫1du=−∫u2du+u
Apply the power rule ∫undu=n+1un+1 (n=−1) with n=2:
u−∫u2du=u−1+2u1+2=u−(3u3)
Recall that u=cos(θ):
u−3u3=cos(θ)−3cos(θ)3
Therefore,
∫(−sin3(θ))dθ=−3cos3(θ)+cos(θ)
Add the constant of integration:
∫(−sin3(θ))dθ=−3cos3(θ)+cos(θ)+C