Integral of sin3(θ)- \sin^{3}{\left(\theta \right)}

The calculator will find the integral/antiderivative of sin3(θ)- \sin^{3}{\left(\theta \right)}, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as dxdx, dydy etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find (sin3(θ))dθ\int \left(- \sin^{3}{\left(\theta \right)}\right)\, d\theta.

Solution

Apply the constant multiple rule cf(θ)dθ=cf(θ)dθ\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta with c=1c=-1 and f(θ)=sin3(θ)f{\left(\theta \right)} = \sin^{3}{\left(\theta \right)}:

(sin3(θ))dθ=(sin3(θ)dθ){\color{red}{\int{\left(- \sin^{3}{\left(\theta \right)}\right)d \theta}}} = {\color{red}{\left(- \int{\sin^{3}{\left(\theta \right)} d \theta}\right)}}

Strip out one sine and write everything else in terms of the cosine, using the formula sin2(α)=cos2(α)+1\sin^2\left(\alpha \right)=-\cos^2\left(\alpha \right)+1 with α=θ\alpha=\theta:

sin3(θ)dθ=(1cos2(θ))sin(θ)dθ- {\color{red}{\int{\sin^{3}{\left(\theta \right)} d \theta}}} = - {\color{red}{\int{\left(1 - \cos^{2}{\left(\theta \right)}\right) \sin{\left(\theta \right)} d \theta}}}

Let u=cos(θ)u=\cos{\left(\theta \right)}.

Then du=(cos(θ))dθ=sin(θ)dθdu=\left(\cos{\left(\theta \right)}\right)^{\prime }d\theta = - \sin{\left(\theta \right)} d\theta (steps can be seen »), and we have that sin(θ)dθ=du\sin{\left(\theta \right)} d\theta = - du.

The integral becomes

(1cos2(θ))sin(θ)dθ=(u21)du- {\color{red}{\int{\left(1 - \cos^{2}{\left(\theta \right)}\right) \sin{\left(\theta \right)} d \theta}}} = - {\color{red}{\int{\left(u^{2} - 1\right)d u}}}

Apply the constant multiple rule cf(u)du=cf(u)du\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du with c=1c=-1 and f(u)=1u2f{\left(u \right)} = 1 - u^{2}:

(u21)du=((1u2)du)- {\color{red}{\int{\left(u^{2} - 1\right)d u}}} = - {\color{red}{\left(- \int{\left(1 - u^{2}\right)d u}\right)}}

Integrate term by term:

(1u2)du=(1duu2du){\color{red}{\int{\left(1 - u^{2}\right)d u}}} = {\color{red}{\left(\int{1 d u} - \int{u^{2} d u}\right)}}

Apply the constant rule cdu=cu\int c\, du = c u with c=1c=1:

u2du+1du=u2du+u- \int{u^{2} d u} + {\color{red}{\int{1 d u}}} = - \int{u^{2} d u} + {\color{red}{u}}

Apply the power rule undu=un+1n+1\int u^{n}\, du = \frac{u^{n + 1}}{n + 1} (n1)\left(n \neq -1 \right) with n=2n=2:

uu2du=uu1+21+2=u(u33)u - {\color{red}{\int{u^{2} d u}}}=u - {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=u - {\color{red}{\left(\frac{u^{3}}{3}\right)}}

Recall that u=cos(θ)u=\cos{\left(\theta \right)}:

uu33=cos(θ)cos(θ)33{\color{red}{u}} - \frac{{\color{red}{u}}^{3}}{3} = {\color{red}{\cos{\left(\theta \right)}}} - \frac{{\color{red}{\cos{\left(\theta \right)}}}^{3}}{3}

Therefore,

(sin3(θ))dθ=cos3(θ)3+cos(θ)\int{\left(- \sin^{3}{\left(\theta \right)}\right)d \theta} = - \frac{\cos^{3}{\left(\theta \right)}}{3} + \cos{\left(\theta \right)}

Add the constant of integration:

(sin3(θ))dθ=cos3(θ)3+cos(θ)+C\int{\left(- \sin^{3}{\left(\theta \right)}\right)d \theta} = - \frac{\cos^{3}{\left(\theta \right)}}{3} + \cos{\left(\theta \right)}+C

Answer

(sin3(θ))dθ=(cos3(θ)3+cos(θ))+C\int \left(- \sin^{3}{\left(\theta \right)}\right)\, d\theta = \left(- \frac{\cos^{3}{\left(\theta \right)}}{3} + \cos{\left(\theta \right)}\right) + CA