Solution
Perform partial fraction decomposition:
∫a2−x21dx=∫(2a(a+x)1−2a(−a+x)1)dx
Integrate term by term:
∫(2a(a+x)1−2a(−a+x)1)dx=(−∫2a(−a+x)1dx+∫2a(a+x)1dx)
Apply the constant multiple rule ∫cf(x)dx=c∫f(x)dx with c=2a1 and f(x)=a+x1:
−∫2a(−a+x)1dx+∫2a(a+x)1dx=−∫2a(−a+x)1dx+(2a∫a+x1dx)
Let u=a+x.
Then du=(a+x)′dx=1dx (steps can be seen »), and we have that dx=du.
The integral can be rewritten as
−∫2a(−a+x)1dx+2a∫a+x1dx=−∫2a(−a+x)1dx+2a∫u1du
The integral of u1 is ∫u1du=ln(∣u∣):
−∫2a(−a+x)1dx+2a∫u1du=−∫2a(−a+x)1dx+2aln(∣u∣)
Recall that u=a+x:
−∫2a(−a+x)1dx+2aln(∣u∣)=−∫2a(−a+x)1dx+2aln(∣(a+x)∣)
Apply the constant multiple rule ∫cf(x)dx=c∫f(x)dx with c=2a1 and f(x)=−a+x1:
−∫2a(−a+x)1dx+2aln(∣a+x∣)=−(2a∫−a+x1dx)+2aln(∣a+x∣)
Let u=−a+x.
Then du=(−a+x)′dx=1dx (steps can be seen »), and we have that dx=du.
So,
2aln(∣a+x∣)−2a∫−a+x1dx=2aln(∣a+x∣)−2a∫u1du
The integral of u1 is ∫u1du=ln(∣u∣):
2aln(∣a+x∣)−2a∫u1du=2aln(∣a+x∣)−2aln(∣u∣)
Recall that u=−a+x:
2aln(∣a+x∣)−2aln(∣u∣)=2aln(∣a+x∣)−2aln(∣(−a+x)∣)
Therefore,
∫a2−x21dx=−2aln(∣a−x∣)+2aln(∣a+x∣)
Simplify:
∫a2−x21dx=2a−ln(∣a−x∣)+ln(∣a+x∣)
Add the constant of integration:
∫a2−x21dx=2a−ln(∣a−x∣)+ln(∣a+x∣)+C