The calculator will find the integral/antiderivative of
−2+x1, with steps shown.
Related calculator:
Definite and Improper Integral Calculator
Solution
Integrate term by term:
∫(−2+x1)dx=(−∫2dx+∫x1dx)
Apply the constant rule ∫cdx=cx with c=2:
∫x1dx−∫2dx=∫x1dx−(2x)
The integral of x1 is ∫x1dx=ln(∣x∣):
−2x+∫x1dx=−2x+ln(∣x∣)
Therefore,
∫(−2+x1)dx=−2x+ln(∣x∣)
Add the constant of integration:
∫(−2+x1)dx=−2x+ln(∣x∣)+C
Answer
∫(−2+x1)dx=(−2x+ln(∣x∣))+CA