Integral of 313x\frac{3}{13 x}

The calculator will find the integral/antiderivative of 313x\frac{3}{13 x}, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as dxdx, dydy etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find 313xdx\int \frac{3}{13 x}\, dx.

Solution

Apply the constant multiple rule cf(x)dx=cf(x)dx\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx with c=313c=\frac{3}{13} and f(x)=1xf{\left(x \right)} = \frac{1}{x}:

313xdx=(31xdx13){\color{red}{\int{\frac{3}{13 x} d x}}} = {\color{red}{\left(\frac{3 \int{\frac{1}{x} d x}}{13}\right)}}

The integral of 1x\frac{1}{x} is 1xdx=ln(x)\int{\frac{1}{x} d x} = \ln{\left(\left|{x}\right| \right)}:

31xdx13=3ln(x)13\frac{3 {\color{red}{\int{\frac{1}{x} d x}}}}{13} = \frac{3 {\color{red}{\ln{\left(\left|{x}\right| \right)}}}}{13}

Therefore,

313xdx=3ln(x)13\int{\frac{3}{13 x} d x} = \frac{3 \ln{\left(\left|{x}\right| \right)}}{13}

Add the constant of integration:

313xdx=3ln(x)13+C\int{\frac{3}{13 x} d x} = \frac{3 \ln{\left(\left|{x}\right| \right)}}{13}+C

Answer

313xdx=3ln(x)13+C\int \frac{3}{13 x}\, dx = \frac{3 \ln\left(\left|{x}\right|\right)}{13} + CA