Integral of asin(x)\operatorname{asin}{\left(x \right)}

The calculator will find the integral/antiderivative of asin(x)\operatorname{asin}{\left(x \right)}, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as dxdx, dydy etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find asin(x)dx\int \operatorname{asin}{\left(x \right)}\, dx.

Solution

For the integral asin(x)dx\int{\operatorname{asin}{\left(x \right)} d x}, use integration by parts udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}.

Let u=asin(x)\operatorname{u}=\operatorname{asin}{\left(x \right)} and dv=dx\operatorname{dv}=dx.

Then du=(asin(x))dx=dx1x2\operatorname{du}=\left(\operatorname{asin}{\left(x \right)}\right)^{\prime }dx=\frac{dx}{\sqrt{1 - x^{2}}} (steps can be seen ») and v=1dx=x\operatorname{v}=\int{1 d x}=x (steps can be seen »).

So,

asin(x)dx=(asin(x)xx11x2dx)=(xasin(x)x1x2dx){\color{red}{\int{\operatorname{asin}{\left(x \right)} d x}}}={\color{red}{\left(\operatorname{asin}{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{\sqrt{1 - x^{2}}} d x}\right)}}={\color{red}{\left(x \operatorname{asin}{\left(x \right)} - \int{\frac{x}{\sqrt{1 - x^{2}}} d x}\right)}}

Let u=1x2u=1 - x^{2}.

Then du=(1x2)dx=2xdxdu=\left(1 - x^{2}\right)^{\prime }dx = - 2 x dx (steps can be seen »), and we have that xdx=du2x dx = - \frac{du}{2}.

The integral can be rewritten as

xasin(x)x1x2dx=xasin(x)(12u)dux \operatorname{asin}{\left(x \right)} - {\color{red}{\int{\frac{x}{\sqrt{1 - x^{2}}} d x}}} = x \operatorname{asin}{\left(x \right)} - {\color{red}{\int{\left(- \frac{1}{2 \sqrt{u}}\right)d u}}}

Apply the constant multiple rule cf(u)du=cf(u)du\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du with c=12c=- \frac{1}{2} and f(u)=1uf{\left(u \right)} = \frac{1}{\sqrt{u}}:

xasin(x)(12u)du=xasin(x)(1udu2)x \operatorname{asin}{\left(x \right)} - {\color{red}{\int{\left(- \frac{1}{2 \sqrt{u}}\right)d u}}} = x \operatorname{asin}{\left(x \right)} - {\color{red}{\left(- \frac{\int{\frac{1}{\sqrt{u}} d u}}{2}\right)}}

Apply the power rule undu=un+1n+1\int u^{n}\, du = \frac{u^{n + 1}}{n + 1} (n1)\left(n \neq -1 \right) with n=12n=- \frac{1}{2}:

xasin(x)+1udu2=xasin(x)+u12du2=xasin(x)+u12+112+12=xasin(x)+(2u12)2=xasin(x)+(2u)2x \operatorname{asin}{\left(x \right)} + \frac{{\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}}{2}=x \operatorname{asin}{\left(x \right)} + \frac{{\color{red}{\int{u^{- \frac{1}{2}} d u}}}}{2}=x \operatorname{asin}{\left(x \right)} + \frac{{\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}}{2}=x \operatorname{asin}{\left(x \right)} + \frac{{\color{red}{\left(2 u^{\frac{1}{2}}\right)}}}{2}=x \operatorname{asin}{\left(x \right)} + \frac{{\color{red}{\left(2 \sqrt{u}\right)}}}{2}

Recall that u=1x2u=1 - x^{2}:

xasin(x)+u=xasin(x)+(1x2)x \operatorname{asin}{\left(x \right)} + \sqrt{{\color{red}{u}}} = x \operatorname{asin}{\left(x \right)} + \sqrt{{\color{red}{\left(1 - x^{2}\right)}}}

Therefore,

asin(x)dx=xasin(x)+1x2\int{\operatorname{asin}{\left(x \right)} d x} = x \operatorname{asin}{\left(x \right)} + \sqrt{1 - x^{2}}

Add the constant of integration:

asin(x)dx=xasin(x)+1x2+C\int{\operatorname{asin}{\left(x \right)} d x} = x \operatorname{asin}{\left(x \right)} + \sqrt{1 - x^{2}}+C

Answer

asin(x)dx=(xasin(x)+1x2)+C\int \operatorname{asin}{\left(x \right)}\, dx = \left(x \operatorname{asin}{\left(x \right)} + \sqrt{1 - x^{2}}\right) + CA