Solution
Let u=2x.
Then du=(2x)′dx=2dx (steps can be seen »), and we have that dx=2du.
Therefore,
∫cot(2x)dx=∫2cot(u)du
Apply the constant multiple rule ∫cf(u)du=c∫f(u)du with c=21 and f(u)=cot(u):
∫2cot(u)du=(2∫cot(u)du)
Rewrite the cotangent as cot(u)=sin(u)cos(u):
2∫cot(u)du=2∫sin(u)cos(u)du
Let v=sin(u).
Then dv=(sin(u))′du=cos(u)du (steps can be seen »), and we have that cos(u)du=dv.
Therefore,
2∫sin(u)cos(u)du=2∫v1dv
The integral of v1 is ∫v1dv=ln(∣v∣):
2∫v1dv=2ln(∣v∣)
Recall that v=sin(u):
2ln(∣v∣)=2ln(∣sin(u)∣)
Recall that u=2x:
2ln(∣sin(u)∣)=2ln(∣sin((2x))∣)
Therefore,
∫cot(2x)dx=2ln(∣sin(2x)∣)
Add the constant of integration:
∫cot(2x)dx=2ln(∣sin(2x)∣)+C