The calculator will find the integral/antiderivative of
ln(x), with steps shown.
Related calculator:
Definite and Improper Integral Calculator
Solution
For the integral ∫ln(x)dx, use integration by parts ∫udv=uv−∫vdu.
Let u=ln(x) and dv=dx.
Then du=(ln(x))′dx=xdx (steps can be seen ») and v=∫1dx=x (steps can be seen »).
Thus,
∫ln(x)dx=(ln(x)⋅x−∫x⋅x1dx)=(xln(x)−∫1dx)
Apply the constant rule ∫cdx=cx with c=1:
xln(x)−∫1dx=xln(x)−x
Therefore,
∫ln(x)dx=xln(x)−x
Simplify:
∫ln(x)dx=x(ln(x)−1)
Add the constant of integration:
∫ln(x)dx=x(ln(x)−1)+C
Answer
∫ln(x)dx=x(ln(x)−1)+CA