Integral of sec3(x)\sec^{3}{\left(x \right)}

The calculator will find the integral/antiderivative of sec3(x)\sec^{3}{\left(x \right)}, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as dxdx, dydy etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find sec3(x)dx\int \sec^{3}{\left(x \right)}\, dx.

Solution

For the integral sec3(x)dx\int{\sec^{3}{\left(x \right)} d x}, use integration by parts udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}.

Let u=sec(x)\operatorname{u}=\sec{\left(x \right)} and dv=sec2(x)dx\operatorname{dv}=\sec^{2}{\left(x \right)} dx.

Then du=(sec(x))dx=tan(x)sec(x)dx\operatorname{du}=\left(\sec{\left(x \right)}\right)^{\prime }dx=\tan{\left(x \right)} \sec{\left(x \right)} dx (steps can be seen ») and v=sec2(x)dx=tan(x)\operatorname{v}=\int{\sec^{2}{\left(x \right)} d x}=\tan{\left(x \right)} (steps can be seen »).

The integral can be rewritten as

sec3(x)dx=sec(x)tan(x)tan(x)tan(x)sec(x)dx=tan(x)sec(x)tan2(x)sec(x)dx\int{\sec^{3}{\left(x \right)} d x}=\sec{\left(x \right)} \cdot \tan{\left(x \right)}-\int{\tan{\left(x \right)} \cdot \tan{\left(x \right)} \sec{\left(x \right)} d x}=\tan{\left(x \right)} \sec{\left(x \right)} - \int{\tan^{2}{\left(x \right)} \sec{\left(x \right)} d x}

Apply the formula tan2(x)=sec2(x)1\tan^{2}{\left(x \right)} = \sec^{2}{\left(x \right)} - 1:

tan(x)sec(x)tan2(x)sec(x)dx=tan(x)sec(x)(sec2(x)1)sec(x)dx\tan{\left(x \right)} \sec{\left(x \right)} - \int{\tan^{2}{\left(x \right)} \sec{\left(x \right)} d x}=\tan{\left(x \right)} \sec{\left(x \right)} - \int{\left(\sec^{2}{\left(x \right)} - 1\right) \sec{\left(x \right)} d x}

Expand:

tan(x)sec(x)(sec2(x)1)sec(x)dx=tan(x)sec(x)(sec3(x)sec(x))dx\tan{\left(x \right)} \sec{\left(x \right)} - \int{\left(\sec^{2}{\left(x \right)} - 1\right) \sec{\left(x \right)} d x}=\tan{\left(x \right)} \sec{\left(x \right)} - \int{\left(\sec^{3}{\left(x \right)} - \sec{\left(x \right)}\right)d x}

The integral of a difference is the difference of integrals:

tan(x)sec(x)(sec3(x)sec(x))dx=tan(x)sec(x)+sec(x)dxsec3(x)dx\tan{\left(x \right)} \sec{\left(x \right)} - \int{\left(\sec^{3}{\left(x \right)} - \sec{\left(x \right)}\right)d x}=\tan{\left(x \right)} \sec{\left(x \right)} + \int{\sec{\left(x \right)} d x} - \int{\sec^{3}{\left(x \right)} d x}

Thus, we get the following simple linear equation with respect to the integral:

sec3(x)dx=tan(x)sec(x)+sec(x)dxsec3(x)dx{\color{red}{\int{\sec^{3}{\left(x \right)} d x}}}=\tan{\left(x \right)} \sec{\left(x \right)} + \int{\sec{\left(x \right)} d x} - {\color{red}{\int{\sec^{3}{\left(x \right)} d x}}}

Solving it, we obtain that

sec3(x)dx=tan(x)sec(x)2+sec(x)dx2\int{\sec^{3}{\left(x \right)} d x}=\frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{\int{\sec{\left(x \right)} d x}}{2}

Rewrite the secant as sec(x)=1cos(x)\sec\left(x\right)=\frac{1}{\cos\left(x\right)}:

tan(x)sec(x)2+sec(x)dx2=tan(x)sec(x)2+1cos(x)dx2\frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{{\color{red}{\int{\sec{\left(x \right)} d x}}}}{2} = \frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{\cos{\left(x \right)}} d x}}}}{2}

Rewrite the cosine in terms of the sine using the formula cos(x)=sin(x+π2)\cos\left(x\right)=\sin\left(x + \frac{\pi}{2}\right) and then rewrite the sine using the double angle formula sin(x)=2sin(x2)cos(x2)\sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right):

tan(x)sec(x)2+1cos(x)dx2=tan(x)sec(x)2+12sin(x2+π4)cos(x2+π4)dx2\frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{\cos{\left(x \right)}} d x}}}}{2} = \frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{2}

Multiply the numerator and denominator by sec2(x2+π4)\sec^2\left(\frac{x}{2} + \frac{\pi}{4} \right):

tan(x)sec(x)2+12sin(x2+π4)cos(x2+π4)dx2=tan(x)sec(x)2+sec2(x2+π4)2tan(x2+π4)dx2\frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{2} = \frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{2}

Let u=tan(x2+π4)u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}.

Then du=(tan(x2+π4))dx=sec2(x2+π4)2dxdu=\left(\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2} dx (steps can be seen »), and we have that sec2(x2+π4)dx=2du\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} dx = 2 du.

Therefore,

tan(x)sec(x)2+sec2(x2+π4)2tan(x2+π4)dx2=tan(x)sec(x)2+1udu2\frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{2} = \frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}

The integral of 1u\frac{1}{u} is 1udu=ln(u)\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}:

tan(x)sec(x)2+1udu2=tan(x)sec(x)2+ln(u)2\frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}

Recall that u=tan(x2+π4)u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}:

ln(u)2+tan(x)sec(x)2=ln(tan(x2+π4))2+tan(x)sec(x)2\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} + \frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} = \frac{\ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{2} + \frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2}

Therefore,

sec3(x)dx=ln(tan(x2+π4))2+tan(x)sec(x)2\int{\sec^{3}{\left(x \right)} d x} = \frac{\ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{2} + \frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2}

Add the constant of integration:

sec3(x)dx=ln(tan(x2+π4))2+tan(x)sec(x)2+C\int{\sec^{3}{\left(x \right)} d x} = \frac{\ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{2} + \frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2}+C

Answer

sec3(x)dx=(ln(tan(x2+π4))2+tan(x)sec(x)2)+C\int \sec^{3}{\left(x \right)}\, dx = \left(\frac{\ln\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right|\right)}{2} + \frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2}\right) + CA