Integral of sec(2x)\sec{\left(2 x \right)}

The calculator will find the integral/antiderivative of sec(2x)\sec{\left(2 x \right)}, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as dxdx, dydy etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find sec(2x)dx\int \sec{\left(2 x \right)}\, dx.

Solution

Let u=2xu=2 x.

Then du=(2x)dx=2dxdu=\left(2 x\right)^{\prime }dx = 2 dx (steps can be seen »), and we have that dx=du2dx = \frac{du}{2}.

The integral becomes

sec(2x)dx=sec(u)2du{\color{red}{\int{\sec{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\sec{\left(u \right)}}{2} d u}}}

Apply the constant multiple rule cf(u)du=cf(u)du\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du with c=12c=\frac{1}{2} and f(u)=sec(u)f{\left(u \right)} = \sec{\left(u \right)}:

sec(u)2du=(sec(u)du2){\color{red}{\int{\frac{\sec{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\sec{\left(u \right)} d u}}{2}\right)}}

Rewrite the secant as sec(u)=1cos(u)\sec\left( u \right)=\frac{1}{\cos\left( u \right)}:

sec(u)du2=1cos(u)du2\frac{{\color{red}{\int{\sec{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}}}{2}

Rewrite the cosine in terms of the sine using the formula cos(u)=sin(u+π2)\cos\left( u \right)=\sin\left( u + \frac{\pi}{2}\right) and then rewrite the sine using the double angle formula sin(u)=2sin(u2)cos(u2)\sin\left( u \right)=2\sin\left(\frac{ u }{2}\right)\cos\left(\frac{ u }{2}\right):

1cos(u)du2=12sin(u2+π4)cos(u2+π4)du2\frac{{\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}}}{2} = \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2}

Multiply the numerator and denominator by sec2(u2+π4)\sec^2\left(\frac{ u }{2} + \frac{\pi}{4} \right):

12sin(u2+π4)cos(u2+π4)du2=sec2(u2+π4)2tan(u2+π4)du2\frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2} = \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2}

Let v=tan(u2+π4)v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}.

Then dv=(tan(u2+π4))du=sec2(u2+π4)2dudv=\left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right)^{\prime }du = \frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2} du (steps can be seen »), and we have that sec2(u2+π4)du=2dv\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} du = 2 dv.

The integral can be rewritten as

sec2(u2+π4)2tan(u2+π4)du2=1vdv2\frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2} = \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}

The integral of 1v\frac{1}{v} is 1vdv=ln(v)\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}:

1vdv2=ln(v)2\frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}

Recall that v=tan(u2+π4)v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}:

ln(v)2=ln(tan(u2+π4))2\frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{{\color{red}{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{2}

Recall that u=2xu=2 x:

ln(tan(π4+u2))2=ln(tan(π4+(2x)2))2\frac{\ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{u}}}{2} \right)}}\right| \right)}}{2} = \frac{\ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{\left(2 x\right)}}}{2} \right)}}\right| \right)}}{2}

Therefore,

sec(2x)dx=ln(tan(x+π4))2\int{\sec{\left(2 x \right)} d x} = \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2}

Add the constant of integration:

sec(2x)dx=ln(tan(x+π4))2+C\int{\sec{\left(2 x \right)} d x} = \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2}+C

Answer

sec(2x)dx=ln(tan(x+π4))2+C\int \sec{\left(2 x \right)}\, dx = \frac{\ln\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right|\right)}{2} + CA