Solution Let u = 2 x u=2 x u = 2 x .
Then d u = ( 2 x ) ′ d x = 2 d x du=\left(2 x\right)^{\prime }dx = 2 dx d u = ( 2 x ) ′ d x = 2 d x (steps can be seen » ), and we have that d x = d u 2 dx = \frac{du}{2} d x = 2 d u .
The integral becomes
∫ sec ( 2 x ) d x = ∫ sec ( u ) 2 d u {\color{red}{\int{\sec{\left(2 x \right)} d x}}} = {\color{red}{\int{\frac{\sec{\left(u \right)}}{2} d u}}} ∫ s e c ( 2 x ) d x = ∫ 2 s e c ( u ) d u
Apply the constant multiple rule ∫ c f ( u ) d u = c ∫ f ( u ) d u \int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du ∫ c f ( u ) d u = c ∫ f ( u ) d u with c = 1 2 c=\frac{1}{2} c = 2 1 and f ( u ) = sec ( u ) f{\left(u \right)} = \sec{\left(u \right)} f ( u ) = sec ( u ) :
∫ sec ( u ) 2 d u = ( ∫ sec ( u ) d u 2 ) {\color{red}{\int{\frac{\sec{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\sec{\left(u \right)} d u}}{2}\right)}} ∫ 2 s e c ( u ) d u = ( 2 ∫ s e c ( u ) d u )
Rewrite the secant as sec ( u ) = 1 cos ( u ) \sec\left( u \right)=\frac{1}{\cos\left( u \right)} sec ( u ) = c o s ( u ) 1 :
∫ sec ( u ) d u 2 = ∫ 1 cos ( u ) d u 2 \frac{{\color{red}{\int{\sec{\left(u \right)} d u}}}}{2} = \frac{{\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}}}{2} 2 ∫ s e c ( u ) d u = 2 ∫ c o s ( u ) 1 d u
Rewrite the cosine in terms of the sine using the formula cos ( u ) = sin ( u + π 2 ) \cos\left( u \right)=\sin\left( u + \frac{\pi}{2}\right) cos ( u ) = sin ( u + 2 π ) and then rewrite the sine using the double angle formula sin ( u ) = 2 sin ( u 2 ) cos ( u 2 ) \sin\left( u \right)=2\sin\left(\frac{ u }{2}\right)\cos\left(\frac{ u }{2}\right) sin ( u ) = 2 sin ( 2 u ) cos ( 2 u ) :
∫ 1 cos ( u ) d u 2 = ∫ 1 2 sin ( u 2 + π 4 ) cos ( u 2 + π 4 ) d u 2 \frac{{\color{red}{\int{\frac{1}{\cos{\left(u \right)}} d u}}}}{2} = \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2} 2 ∫ c o s ( u ) 1 d u = 2 ∫ 2 s i n ( 2 u + 4 π ) c o s ( 2 u + 4 π ) 1 d u
Multiply the numerator and denominator by sec 2 ( u 2 + π 4 ) \sec^2\left(\frac{ u }{2} + \frac{\pi}{4} \right) sec 2 ( 2 u + 4 π ) :
∫ 1 2 sin ( u 2 + π 4 ) cos ( u 2 + π 4 ) d u 2 = ∫ sec 2 ( u 2 + π 4 ) 2 tan ( u 2 + π 4 ) d u 2 \frac{{\color{red}{\int{\frac{1}{2 \sin{\left(\frac{u}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2} = \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2} 2 ∫ 2 s i n ( 2 u + 4 π ) c o s ( 2 u + 4 π ) 1 d u = 2 ∫ 2 t a n ( 2 u + 4 π ) s e c 2 ( 2 u + 4 π ) d u
Let v = tan ( u 2 + π 4 ) v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)} v = tan ( 2 u + 4 π ) .
Then d v = ( tan ( u 2 + π 4 ) ) ′ d u = sec 2 ( u 2 + π 4 ) 2 d u dv=\left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right)^{\prime }du = \frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2} du d v = ( tan ( 2 u + 4 π ) ) ′ d u = 2 s e c 2 ( 2 u + 4 π ) d u (steps can be seen » ), and we have that sec 2 ( u 2 + π 4 ) d u = 2 d v \sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} du = 2 dv sec 2 ( 2 u + 4 π ) d u = 2 d v .
The integral can be rewritten as
∫ sec 2 ( u 2 + π 4 ) 2 tan ( u 2 + π 4 ) d u 2 = ∫ 1 v d v 2 \frac{{\color{red}{\int{\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}} d u}}}}{2} = \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} 2 ∫ 2 t a n ( 2 u + 4 π ) s e c 2 ( 2 u + 4 π ) d u = 2 ∫ v 1 d v
The integral of 1 v \frac{1}{v} v 1 is ∫ 1 v d v = ln ( ∣ v ∣ ) \int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)} ∫ v 1 d v = ln ( ∣ v ∣ ) :
∫ 1 v d v 2 = ln ( ∣ v ∣ ) 2 \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2} 2 ∫ v 1 d v = 2 l n ( ∣ v ∣ )
Recall that v = tan ( u 2 + π 4 ) v=\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)} v = tan ( 2 u + 4 π ) :
ln ( ∣ v ∣ ) 2 = ln ( ∣ tan ( u 2 + π 4 ) ∣ ) 2 \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{{\color{red}{\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{2} 2 ln ( ∣ v ∣ ) = 2 ln ( ∣ ∣ t a n ( 2 u + 4 π ) ∣ ∣ )
Recall that u = 2 x u=2 x u = 2 x :
ln ( ∣ tan ( π 4 + u 2 ) ∣ ) 2 = ln ( ∣ tan ( π 4 + ( 2 x ) 2 ) ∣ ) 2 \frac{\ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{u}}}{2} \right)}}\right| \right)}}{2} = \frac{\ln{\left(\left|{\tan{\left(\frac{\pi}{4} + \frac{{\color{red}{\left(2 x\right)}}}{2} \right)}}\right| \right)}}{2} 2 ln ( ∣ ∣ tan ( 4 π + 2 u ) ∣ ∣ ) = 2 ln ( ∣ ∣ tan ( 4 π + 2 ( 2 x ) ) ∣ ∣ )
Therefore,
∫ sec ( 2 x ) d x = ln ( ∣ tan ( x + π 4 ) ∣ ) 2 \int{\sec{\left(2 x \right)} d x} = \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2} ∫ sec ( 2 x ) d x = 2 ln ( ∣ ∣ tan ( x + 4 π ) ∣ ∣ )
Add the constant of integration:
∫ sec ( 2 x ) d x = ln ( ∣ tan ( x + π 4 ) ∣ ) 2 + C \int{\sec{\left(2 x \right)} d x} = \frac{\ln{\left(\left|{\tan{\left(x + \frac{\pi}{4} \right)}}\right| \right)}}{2}+C ∫ sec ( 2 x ) d x = 2 ln ( ∣ ∣ tan ( x + 4 π ) ∣ ∣ ) + C