Solution
Rewrite the integrand using the formula sin(α)cos(β)=21sin(α−β)+21sin(α+β) with α=14x and β=5x:
∫sin(14x)cos(5x)dx=∫(2sin(9x)+2sin(19x))dx
Apply the constant multiple rule ∫cf(x)dx=c∫f(x)dx with c=21 and f(x)=sin(9x)+sin(19x):
∫(2sin(9x)+2sin(19x))dx=(2∫(sin(9x)+sin(19x))dx)
Integrate term by term:
2∫(sin(9x)+sin(19x))dx=2(∫sin(9x)dx+∫sin(19x)dx)
Let u=9x.
Then du=(9x)′dx=9dx (steps can be seen »), and we have that dx=9du.
Therefore,
2∫sin(19x)dx+2∫sin(9x)dx=2∫sin(19x)dx+2∫9sin(u)du
Apply the constant multiple rule ∫cf(u)du=c∫f(u)du with c=91 and f(u)=sin(u):
2∫sin(19x)dx+2∫9sin(u)du=2∫sin(19x)dx+2(9∫sin(u)du)
The integral of the sine is ∫sin(u)du=−cos(u):
2∫sin(19x)dx+18∫sin(u)du=2∫sin(19x)dx+18(−cos(u))
Recall that u=9x:
2∫sin(19x)dx−18cos(u)=2∫sin(19x)dx−18cos((9x))
Let u=19x.
Then du=(19x)′dx=19dx (steps can be seen »), and we have that dx=19du.
Thus,
−18cos(9x)+2∫sin(19x)dx=−18cos(9x)+2∫19sin(u)du
Apply the constant multiple rule ∫cf(u)du=c∫f(u)du with c=191 and f(u)=sin(u):
−18cos(9x)+2∫19sin(u)du=−18cos(9x)+2(19∫sin(u)du)
The integral of the sine is ∫sin(u)du=−cos(u):
−18cos(9x)+38∫sin(u)du=−18cos(9x)+38(−cos(u))
Recall that u=19x:
−18cos(9x)−38cos(u)=−18cos(9x)−38cos((19x))
Therefore,
∫sin(14x)cos(5x)dx=−18cos(9x)−38cos(19x)
Add the constant of integration:
∫sin(14x)cos(5x)dx=−18cos(9x)−38cos(19x)+C