Integral of sin(14x)cos(5x)\sin{\left(14 x \right)} \cos{\left(5 x \right)}

The calculator will find the integral/antiderivative of sin(14x)cos(5x)\sin{\left(14 x \right)} \cos{\left(5 x \right)}, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as dxdx, dydy etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find sin(14x)cos(5x)dx\int \sin{\left(14 x \right)} \cos{\left(5 x \right)}\, dx.

Solution

Rewrite the integrand using the formula sin(α)cos(β)=12sin(αβ)+12sin(α+β)\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right) with α=14x\alpha=14 x and β=5x\beta=5 x:

sin(14x)cos(5x)dx=(sin(9x)2+sin(19x)2)dx{\color{red}{\int{\sin{\left(14 x \right)} \cos{\left(5 x \right)} d x}}} = {\color{red}{\int{\left(\frac{\sin{\left(9 x \right)}}{2} + \frac{\sin{\left(19 x \right)}}{2}\right)d x}}}

Apply the constant multiple rule cf(x)dx=cf(x)dx\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx with c=12c=\frac{1}{2} and f(x)=sin(9x)+sin(19x)f{\left(x \right)} = \sin{\left(9 x \right)} + \sin{\left(19 x \right)}:

(sin(9x)2+sin(19x)2)dx=((sin(9x)+sin(19x))dx2){\color{red}{\int{\left(\frac{\sin{\left(9 x \right)}}{2} + \frac{\sin{\left(19 x \right)}}{2}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(\sin{\left(9 x \right)} + \sin{\left(19 x \right)}\right)d x}}{2}\right)}}

Integrate term by term:

(sin(9x)+sin(19x))dx2=(sin(9x)dx+sin(19x)dx)2\frac{{\color{red}{\int{\left(\sin{\left(9 x \right)} + \sin{\left(19 x \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{\sin{\left(9 x \right)} d x} + \int{\sin{\left(19 x \right)} d x}\right)}}}{2}

Let u=9xu=9 x.

Then du=(9x)dx=9dxdu=\left(9 x\right)^{\prime }dx = 9 dx (steps can be seen »), and we have that dx=du9dx = \frac{du}{9}.

Therefore,

sin(19x)dx2+sin(9x)dx2=sin(19x)dx2+sin(u)9du2\frac{\int{\sin{\left(19 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(9 x \right)} d x}}}}{2} = \frac{\int{\sin{\left(19 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{9} d u}}}}{2}

Apply the constant multiple rule cf(u)du=cf(u)du\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du with c=19c=\frac{1}{9} and f(u)=sin(u)f{\left(u \right)} = \sin{\left(u \right)}:

sin(19x)dx2+sin(u)9du2=sin(19x)dx2+(sin(u)du9)2\frac{\int{\sin{\left(19 x \right)} d x}}{2} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{9} d u}}}}{2} = \frac{\int{\sin{\left(19 x \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{9}\right)}}}{2}

The integral of the sine is sin(u)du=cos(u)\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}:

sin(19x)dx2+sin(u)du18=sin(19x)dx2+(cos(u))18\frac{\int{\sin{\left(19 x \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{18} = \frac{\int{\sin{\left(19 x \right)} d x}}{2} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{18}

Recall that u=9xu=9 x:

sin(19x)dx2cos(u)18=sin(19x)dx2cos((9x))18\frac{\int{\sin{\left(19 x \right)} d x}}{2} - \frac{\cos{\left({\color{red}{u}} \right)}}{18} = \frac{\int{\sin{\left(19 x \right)} d x}}{2} - \frac{\cos{\left({\color{red}{\left(9 x\right)}} \right)}}{18}

Let u=19xu=19 x.

Then du=(19x)dx=19dxdu=\left(19 x\right)^{\prime }dx = 19 dx (steps can be seen »), and we have that dx=du19dx = \frac{du}{19}.

Thus,

cos(9x)18+sin(19x)dx2=cos(9x)18+sin(u)19du2- \frac{\cos{\left(9 x \right)}}{18} + \frac{{\color{red}{\int{\sin{\left(19 x \right)} d x}}}}{2} = - \frac{\cos{\left(9 x \right)}}{18} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{19} d u}}}}{2}

Apply the constant multiple rule cf(u)du=cf(u)du\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du with c=119c=\frac{1}{19} and f(u)=sin(u)f{\left(u \right)} = \sin{\left(u \right)}:

cos(9x)18+sin(u)19du2=cos(9x)18+(sin(u)du19)2- \frac{\cos{\left(9 x \right)}}{18} + \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{19} d u}}}}{2} = - \frac{\cos{\left(9 x \right)}}{18} + \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{19}\right)}}}{2}

The integral of the sine is sin(u)du=cos(u)\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}:

cos(9x)18+sin(u)du38=cos(9x)18+(cos(u))38- \frac{\cos{\left(9 x \right)}}{18} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{38} = - \frac{\cos{\left(9 x \right)}}{18} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{38}

Recall that u=19xu=19 x:

cos(9x)18cos(u)38=cos(9x)18cos((19x))38- \frac{\cos{\left(9 x \right)}}{18} - \frac{\cos{\left({\color{red}{u}} \right)}}{38} = - \frac{\cos{\left(9 x \right)}}{18} - \frac{\cos{\left({\color{red}{\left(19 x\right)}} \right)}}{38}

Therefore,

sin(14x)cos(5x)dx=cos(9x)18cos(19x)38\int{\sin{\left(14 x \right)} \cos{\left(5 x \right)} d x} = - \frac{\cos{\left(9 x \right)}}{18} - \frac{\cos{\left(19 x \right)}}{38}

Add the constant of integration:

sin(14x)cos(5x)dx=cos(9x)18cos(19x)38+C\int{\sin{\left(14 x \right)} \cos{\left(5 x \right)} d x} = - \frac{\cos{\left(9 x \right)}}{18} - \frac{\cos{\left(19 x \right)}}{38}+C

Answer

sin(14x)cos(5x)dx=(cos(9x)18cos(19x)38)+C\int \sin{\left(14 x \right)} \cos{\left(5 x \right)}\, dx = \left(- \frac{\cos{\left(9 x \right)}}{18} - \frac{\cos{\left(19 x \right)}}{38}\right) + CA