Solution
Apply the power reducing formula sin2(α)=21−2cos(2α) with α=x:
∫sin2(x)dx=∫(21−2cos(2x))dx
Apply the constant multiple rule ∫cf(x)dx=c∫f(x)dx with c=21 and f(x)=1−cos(2x):
∫(21−2cos(2x))dx=(2∫(1−cos(2x))dx)
Integrate term by term:
2∫(1−cos(2x))dx=2(∫1dx−∫cos(2x)dx)
Apply the constant rule ∫cdx=cx with c=1:
−2∫cos(2x)dx+2∫1dx=−2∫cos(2x)dx+2x
Let u=2x.
Then du=(2x)′dx=2dx (steps can be seen »), and we have that dx=2du.
Therefore,
2x−2∫cos(2x)dx=2x−2∫2cos(u)du
Apply the constant multiple rule ∫cf(u)du=c∫f(u)du with c=21 and f(u)=cos(u):
2x−2∫2cos(u)du=2x−2(2∫cos(u)du)
The integral of the cosine is ∫cos(u)du=sin(u):
2x−4∫cos(u)du=2x−4sin(u)
Recall that u=2x:
2x−4sin(u)=2x−4sin((2x))
Therefore,
∫sin2(x)dx=2x−4sin(2x)
Add the constant of integration:
∫sin2(x)dx=2x−4sin(2x)+C