The calculator will find the integral/antiderivative of
sin(2x), with steps shown.
Related calculator:
Definite and Improper Integral Calculator
Solution
Let u=2x.
Then du=(2x)′dx=2dx (steps can be seen »), and we have that dx=2du.
So,
∫sin(2x)dx=∫2sin(u)du
Apply the constant multiple rule ∫cf(u)du=c∫f(u)du with c=21 and f(u)=sin(u):
∫2sin(u)du=(2∫sin(u)du)
The integral of the sine is ∫sin(u)du=−cos(u):
2∫sin(u)du=2(−cos(u))
Recall that u=2x:
−2cos(u)=−2cos((2x))
Therefore,
∫sin(2x)dx=−2cos(2x)
Add the constant of integration:
∫sin(2x)dx=−2cos(2x)+C
Answer
∫sin(2x)dx=−2cos(2x)+CA