The calculator will find the integral/antiderivative of
a2t−x2 with respect to
x, with steps shown.
Related calculator:
Definite and Improper Integral Calculator
Solution
Integrate term by term:
∫(a2t−x2)dx=(−∫x2dx+∫a2tdx)
Apply the power rule ∫xndx=n+1xn+1 (n=−1) with n=2:
∫a2tdx−∫x2dx=∫a2tdx−1+2x1+2=∫a2tdx−(3x3)
Apply the constant rule ∫cdx=cx with c=a2t:
−3x3+∫a2tdx=−3x3+a2tx
Therefore,
∫(a2t−x2)dx=a2tx−3x3
Simplify:
∫(a2t−x2)dx=x(a2t−3x2)
Add the constant of integration:
∫(a2t−x2)dx=x(a2t−3x2)+C
Answer
∫(a2t−x2)dx=x(a2t−3x2)+CA