The calculator will find the integral/antiderivative of
tan2(x), with steps shown.
Related calculator:
Definite and Improper Integral Calculator
Solution
Let u=tan(x).
Then x=atan(u) and dx=(atan(u))′du=u2+1du (steps can be seen »).
The integral can be rewritten as
∫tan2(x)dx=∫u2+1u2du
Rewrite and split the fraction:
∫u2+1u2du=∫(1−u2+11)du
Integrate term by term:
∫(1−u2+11)du=(∫1du−∫u2+11du)
Apply the constant rule ∫cdu=cu with c=1:
−∫u2+11du+∫1du=−∫u2+11du+u
The integral of u2+11 is ∫u2+11du=atan(u):
u−∫u2+11du=u−atan(u)
Recall that u=tan(x):
−atan(u)+u=−atan(tan(x))+tan(x)
Therefore,
∫tan2(x)dx=tan(x)−atan(tan(x))
Simplify:
∫tan2(x)dx=−x+tan(x)
Add the constant of integration:
∫tan2(x)dx=−x+tan(x)+C
Answer
∫tan2(x)dx=(−x+tan(x))+CA