Solution
Let u=2x.
Then du=(2x)′dx=2dx (steps can be seen »), and we have that dx=2du.
Therefore,
∫tan(2x)dx=∫2tan(u)du
Apply the constant multiple rule ∫cf(u)du=c∫f(u)du with c=21 and f(u)=tan(u):
∫2tan(u)du=(2∫tan(u)du)
Rewrite the tangent as tan(u)=cos(u)sin(u):
2∫tan(u)du=2∫cos(u)sin(u)du
Let v=cos(u).
Then dv=(cos(u))′du=−sin(u)du (steps can be seen »), and we have that sin(u)du=−dv.
Thus,
2∫cos(u)sin(u)du=2∫(−v1)dv
Apply the constant multiple rule ∫cf(v)dv=c∫f(v)dv with c=−1 and f(v)=v1:
2∫(−v1)dv=2(−∫v1dv)
The integral of v1 is ∫v1dv=ln(∣v∣):
−2∫v1dv=−2ln(∣v∣)
Recall that v=cos(u):
−2ln(∣v∣)=−2ln(∣cos(u)∣)
Recall that u=2x:
−2ln(∣cos(u)∣)=−2ln(∣cos((2x))∣)
Therefore,
∫tan(2x)dx=−2ln(∣cos(2x)∣)
Add the constant of integration:
∫tan(2x)dx=−2ln(∣cos(2x)∣)+C