Integral of xexx e^{- x}

The calculator will find the integral/antiderivative of xexx e^{- x}, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as dxdx, dydy etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find xexdx\int x e^{- x}\, dx.

Solution

For the integral xexdx\int{x e^{- x} d x}, use integration by parts udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}.

Let u=x\operatorname{u}=x and dv=exdx\operatorname{dv}=e^{- x} dx.

Then du=(x)dx=1dx\operatorname{du}=\left(x\right)^{\prime }dx=1 dx (steps can be seen ») and v=exdx=ex\operatorname{v}=\int{e^{- x} d x}=- e^{- x} (steps can be seen »).

The integral becomes

xexdx=(x(ex)(ex)1dx)=(xex(ex)dx){\color{red}{\int{x e^{- x} d x}}}={\color{red}{\left(x \cdot \left(- e^{- x}\right)-\int{\left(- e^{- x}\right) \cdot 1 d x}\right)}}={\color{red}{\left(- x e^{- x} - \int{\left(- e^{- x}\right)d x}\right)}}

Apply the constant multiple rule cf(x)dx=cf(x)dx\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx with c=1c=-1 and f(x)=exf{\left(x \right)} = e^{- x}:

xex(ex)dx=xex(exdx)- x e^{- x} - {\color{red}{\int{\left(- e^{- x}\right)d x}}} = - x e^{- x} - {\color{red}{\left(- \int{e^{- x} d x}\right)}}

Let u=xu=- x.

Then du=(x)dx=dxdu=\left(- x\right)^{\prime }dx = - dx (steps can be seen »), and we have that dx=dudx = - du.

Thus,

xex+exdx=xex+(eu)du- x e^{- x} + {\color{red}{\int{e^{- x} d x}}} = - x e^{- x} + {\color{red}{\int{\left(- e^{u}\right)d u}}}

Apply the constant multiple rule cf(u)du=cf(u)du\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du with c=1c=-1 and f(u)=euf{\left(u \right)} = e^{u}:

xex+(eu)du=xex+(eudu)- x e^{- x} + {\color{red}{\int{\left(- e^{u}\right)d u}}} = - x e^{- x} + {\color{red}{\left(- \int{e^{u} d u}\right)}}

The integral of the exponential function is eudu=eu\int{e^{u} d u} = e^{u}:

xexeudu=xexeu- x e^{- x} - {\color{red}{\int{e^{u} d u}}} = - x e^{- x} - {\color{red}{e^{u}}}

Recall that u=xu=- x:

xexeu=xexe(x)- x e^{- x} - e^{{\color{red}{u}}} = - x e^{- x} - e^{{\color{red}{\left(- x\right)}}}

Therefore,

xexdx=xexex\int{x e^{- x} d x} = - x e^{- x} - e^{- x}

Simplify:

xexdx=(x1)ex\int{x e^{- x} d x} = \left(- x - 1\right) e^{- x}

Add the constant of integration:

xexdx=(x1)ex+C\int{x e^{- x} d x} = \left(- x - 1\right) e^{- x}+C

Answer

xexdx=(x1)ex+C\int x e^{- x}\, dx = \left(- x - 1\right) e^{- x} + CA